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Abstract

We present studying on Hilbert space and linear operators.

It has been studied some of the fundamental concepts of inner product spaces.
Some of these concepts are orthogonal and orthonormal sets that play important
role in constructing Hilbert spaces. As Hilbert space have been defined and
supported with some examples upon them. Some fundamental theorems are also
presented that are in relation to these spaces. Such as Bessel inequality, Gram
Schmidt process in inner product space. And Riez's Theorem.

The researcher has introduced the properties of the linear operators,,linear
functional ,selif-adjoint linear operators and their influences on Hilbert spaces,

which are very important in functional analysis.
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Notations

Bla, b] Space of bounded functions

B[X,Y] Space of bounded linear operators

C A sequence space
C Field of complex numbers
c" Unitary n-space

Cla,b] Space of continuous functions
D(T) Domain of an operator
d(x,y) Distance from x toy

dim X Dimension of a space X

(Fal Norm of bounded linear functional f
LP[a,b] A function space

p A sequence space of [P

[ A sequence space of [
L[X,Y] A space of linear operators
N(T)  Null space of an operator

R The field of real numbers

R™ Euclidean n-space

span M Span of a set M

T* Hilbert-adjoint operator of T
X" X dual space of a vector space

llz]l Norm z



(y,z) Inner product of y and z
y L z yisorthogonal to z

X+ Orthogonal complement of a closed subspace X



Introduction

Functional analysis is an abstract branch of mathematical science. It studies
functions of spaces and involves vector spaces of any dimension[2]. It also studies
the operators that are defined on the vector spaces [10] . Also it includes study of
transforms such as Fourier transforms which they how some applications in
differential and integral equations . In addition, it studies the sequences defined on
functions spaces[16]. This study aims to study Hilbert spaces and some of their
applications. Moreover , it aims to study linear operators ,linear functionals and

their applications on Hilbert spaces.

Hilbert spaces due to the German Mathematician David Hilbert(1862 -1943). The
study of these spaces were introduced in the axioms of Newman's work [9].
Hilbert spaces play an important role in partial differential equations theorems ,

Quantum mechanics ,Fourier transforms and their applications [6].

In the first chapter , it has been studied some principle concepts and examples that
with Hilbert spaces, such as metric spaces, vector spaces, sequences, hormed

spaces, the bounded linear operators and the linear functionals.

In the second chapter , it has been studied inner product space, Hilbert spaces,
orthogonal, orthonormal. Some theorems that are related to them. Also some

properties of the inner product, direct sum and orthogonal complement .

In the third chapter, it has been studied the linear functionals on Hilbert spaces, the
sesquilinear functional, Hilbert-Adjoint operator, some examples and theorems

that are related to them.



Chapter One



1 Some Fundamental Concepts

This chapter aims to introduce some principle concepts, which have great
importance in studying Hilbert spaces, such as metric spaces ,normed spaces
which are defined on vector spaces. So that it is so essential to show vector spaces
and know their properties geometrically. We will be showed some principle

definitions.
1.1 Metric Spaces

Metric spaces can be considered as a basic spaces. The ideas of convergence and
continuity exist. The fundamental ingredient that is needed to make these concepts
is a distance, also called a metric, which is a measure of how elements close to
each other [15].

Definition (1.1.1)
A distance (or metric) on a non-empty set X is a function.
d:XxX — RtU{0}
(x,y) — d(x,y)
Such that the following properties (called axioms) hold for all x,y,z € X,

1) d(x,y) <d(x,z) +d(zy),(Triangle inequality),
2) d(y,x) =d(x,y), (Symmetry)
3) d(x,y)=20Vx,y€eX and d(x,y) =0 if and only if x =y,

The pair (X, d) is called Metric Space .
In stead of (X, d) we may simply write X.
1.2 Normed Spaces

" If we take a vector space and define a metric on it using a norm, we can obtain the
metric spaces. A normed space is the name given to the resulting area. It is then
referred to as a Banach space if it is a full metric space. They are the developed of
functional analysis, and on them are defined Banach spaces of linear operators.

The fundamental concepts of these theories are presented in this chapter”[13].
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Vector space plays role in many branches of mathematics . A vector space is
Hilbert space (linear space). Additionally, this section includes background

information on these spaces. [19 ].
Definition (1.2.1)

If X is a nonempty set of elements X, vy, z,... and F is a field of scalars,,..., then x+y
in X and x in X correspond to a third element, known as the scalar product of and
X, such that addition and multiplication meet the following criteria.

1) x+y=y+x Vx,y€X
2) x+(+2)=(x+y)+z Vxyz€eX,

3) there is a unique element 0in X, called zero element, such that x +

0=x, Vx € X,

4) Vvx € X, there is a unique element (—x) in X such that x + (—x) = 0,
a) alx+y) =ax+ay Vx,y€EX a€F,

b) (aB)x = a(fx) VxeX,af €F and

c) 1x =x Vx € X,where 1 € Fisthe identity in F.

Then (X, +,.) Satisfying properties ((1) — (4)) and ((a) — (c)) referred to as
a vector space over F. The components of X are known as vectors or points,
while the components of F are known as scalars. A complex vector space is

(X,+,.) if F is the field of complex numbers C [resp - real numberR] [14]
Definition(1. 2.2)

A subspace of a vector space X is a nonempty subset Y of X such that we have
ay, + fy, € Y forevery y;,y, €Y and all scalars a, 5. Y is a vector space in

and of itself. These two algebraic operations are those that X induces.

Definition (1.2.3)

It is argued that a finitely many-vector series {x;, x,, ..., x,, }is linearly independent
if the relation

11



ai1x1 +azxy, + - apx, =0

Holds in case when a; = a, = -+ = a,, = 0 ; otherwise , the of elements

sequence xj, Xy, ..., Xy IS Said to be linear dependent .

Definition (1.2.4)

A basis is a collection of linearly independent vectors with the property that each
vector xeX can be a linear combination of some subset of B if X is a vector space

and B is a collection of linearly independent vectors.

Definition (1.2.5)

If there is a positive integer n such that X includes a linearly independent

collection of n vectors, then the dimension of the vector space X is finite. Any

collection of n+1 or more X vectors is linearly dependent, and n is referred to as
the X dimension, denoted by the formula n=dimX.

X=0 has a finite number of dimensions, and dimX=0

Let X have infinite dimensions rather than finite ones.
Definition (1.2.6)

A vector space with a norm defined on which is called a Normed space (X). A
complete normed space is a banach space. Here, a vector space norm (real or
complex) A positive real-valued function on X is called X, and its value at xeX is

represented by||-]| : z — R* U {0}

1) lIx|]l=0 VvxeX

2) |lxll=0 ifandonlyif x=0

3) llax|| = la|llx|]| Vx € X,a € F,(F =Ror C)

4) |lx+yl|l < llxll + llyll (Triangle inequality)vx,y € X

with the aforementioned traits

A metric d on X defined by d(x, y)= [|lx — y||, (x ,y €X), also known as the metric

by the norm, is said to be the metric on X.

X, 111D or just X serves as the definition of the normed spaces.
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We will see later in this part that not all of the metrics on a vector space can be
derived from a norm, as was mentioned in earlier sections where some of the
metric spaces may be converted into normed spaces [12].

Next we give some examples.
Examples(1.2.1)

DIfFX =R", and x = (x4, ..., %) , ¥ = (¥4, ..., ¥n) suchthat d(x,y) =

V1 —y1)? + -+ (xn, — yn)? then

|x|| = (Z?ﬂxizﬁ for all x € R™ defin norm on R™, hence (R™, ||-||)is a normed

space.

2)If X =[P, such that .72 [x;|P < o (p = 1 ,fixed) , In the space [P, each

element is a sequence.X = (x;) = (x4, x5, ... ) of numbers ,then

1
x|l = Q524 l1x;11P)? forall x; € IP define a norm on [P and given by

1
0 P
d(x,y) = llx—yll = (z I —mp)
]:

3)If X =C", then
1
x|l = X, 1x;1?)z forall x e C™
define norm on C", thatis (C", ||+||) is a normed space.

Definition (1.2.7)

Suppose X is a metric space. A sequence of points{x,, },ey converges to the point
inXxeXif

lim d(x,,x)=0.
n—oo
That is for every € > 0 there must exist some integer N > 0 such that
d(x,,x) <eVn=N.

In this case, we write x,, — x.
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Examples(1.2.2)

In any metric space x,, — x if and only if d(x,,x) — 0 asn — oo (because

X, € Be(x) ifand only if d(x,,x) < ¢) . for example, x,, — x when d(x,, x) <

L hold .
n

Definition (1.2.8)

If X is a metric space and for every € > 0 there exists an integer N > 0 .A

sequence of points{x, },en in X is a Cauchy sequence like that
dXp,xp) <€ YVmn=N.
Definition (1.2.9)

A series converges is a sequence of vectors in a normed space obtained by
addition , (1, x; + x5, X1 + X, + x3, ... ) ; the sequence's N** term is denoted by

S, =YN_.x, ,N € N (The sequence partial sums).

Therefore, the series Y., x,, is convergent to x if ||x — YN_; x,|| — 0 when

N — oo,
In this case the limit x is called its sum
Xp+xy+ =Y %, = lim ¥N_ x, = x.
N—-oo
A series is called the converge absolutely when }’,,||x,, || converges in R.

Definition(1.2.10)

If every Cauchy sequence in a metric space (X,d) converges to a point in X, then
the space is said to be complete.
Definition (1.2.11)

Let there are two metric spaces, (X,d) and (X, d). If d(T (), T(2)) = d(y, z) for

any y ,z €X, amapping T from X to X is an isometry.
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Definition (1.2.12)

If X a metric space is called the separable if it contains a countable dense sub set

A ,where A is countableand 4 = X .

Therefore, since subspace Y of a Banach space X is a subspace of X taken into
account as a normed space, we do not require Y to be complete.
Theorem (1.2.1) [13]

If the space (X, ||-]])is normed. Following that, a dense in X Banach space X and
an isometry A form X onto a subspace W of X are present. With the exception of

isomorphism, the space Xis unique.
Proof

Since a complete metric space X = (X, d) and an isometry A: X — W = A(X),
where W is dense in X is unique , except for isometries. We must first turn X into
a vector space before imposing an appropriate norm on it. We consider any x,y €
X in order to define on X the two algebraic operations of a vector space. and
representatives (x,) € X and (y,,) € y. Since the equivalence classes of Cauchy
sequences in X are X and . z,is set to be equal to x,, + y,,. Therefore, (z,,)is

Cauchy in X because

”Zn - Zm” = ”xn + Vn — (xm + ym)” < ”xn - xm” + “yn - ym”

We define the equivalence class for which (z,,) is a representative as the sum 2z =
X+ yofx,y;hence (z,)€ Z. This concept is not dependent on the Cauchy
sequences chosen to represent X and . since if (x,,)~(x;,) and (y,)~(,), then

(xn + Yu)~(%, + ) because ax € X which (ax,)

”xn + Yn — (x,n + };n)” < ”xn - x,n” + ”yn - y,n”

We have defined the equivalence for which (ax,,) is a representative as the
product ax € Xof a scalar a and x. The selection of an x representative has no
bearing on this definition. The equivalence class containing all Cauchy sequences
that converge to zero is represented by the zero element of X. As a result, X is a

vector space. According to the definition, the vector space operations induced
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from X and those induced from X using A agree on W. A creates a norm ||-||; on
W whose value at each of the points § = Ax € W is ||9]l; = ||x||. Given that A is
isometric, the restriction of d to W is the equivalent metric on W. By going

beyond the norm ||-||;to X by setting [|2]l, = d(0, % )for every x € X .
1.3 Finite Dimensional Normed Spaces and Subspaces.

" Due to the significant role that finite dimensional normed spaces and subspaces
play in Hilbert space. We are unable to find a linear combination that contains
large scalars but represents a small vector in the case of linear independence of
vectors"[3]

Lemma (1.3.1) [13]

If a normed space X (of any dimension) contains a collection of linearly
independent vectors named {x,, x,, ..., x,}. Then there is an integer ¢>0 such that

for each of scalars a4, a5, ..., @, We obtain
lleeyxy + -+ apxnll = c(lay | + -+ ayl) 5(c>0) — (1)
Proof

We write s = |ay| + - + |a,| .If s = 0 ,then all a; are zero forall 1 < j <n,

Therefore, (1) is true for each ¢

Lets>0. If B; = a;/s, then (1) is similar to the inequality that we derive from (1)

by multiplying by s .Thus
|B1x1 + =+ Brxnll = ¢ ; (Z?:llﬁ]l = 1) — (2)
for each n-tuple of scalars By, ..., B, with ¥7_,|B;| = 1 ,since(2) holds.
Let's say that is false. Then a sequence (y,,) of vectors
Y =B xy o B ™y (T04]B 7] = 1)exists
Such that By, ..., B, with X7, |B;] = 1

|yl — 0 as m — oo.

16



Since X|8;"™| = 1, hence |8,"™| < 1. So that for any fixed j the sequence

B;™) = (3,82,

is bounded . Since (Bl(m)) has a convergent subsequence. If 8; denote the limit
of that subsequence, if (y;,m) the corresponding subsequence of (y,,) .Also

(y1,m) has a subsequence (y,, m)for which the corresponding subsequence of

(m)

scalars B, converges ; if 8, denote the limit .Continuing in this way, after n

steps we obtain a subsequence (Ynm) = (Vn1, Ynzs - ) 0f (¥m) Whose terms are

of the form

Ynm = 7j1=1 ij(m) Xj ) (Z?:lllj(m)l = 1)

with scalars /11-('”) satisfying /1]-(’") — f;as m — oo .Sothat, asm — oo,
Ynm — ¥ = Xj=1Bjx; where Z|,8j| = 1 ,hence not all B; can be zero . Since

{x1, x5, ..., x,} is a linearly independent set , we have y # 0. On the other hand

s Ynm — ¥ implies [|ym|| — Iyl . Since |lyyll — 0 and (y,,) isa
subsequence of (y,,) , we must have ||y, || — 0 . Hence [lyll = 0 ,thusy = 0.

This contradicts y # 0 .

Theorem (1.3.2) [20]

If a normed space X is finite dimensions subspaces Y are all complete.
Proof

Let (y,,)be a Cauchy sequence in Y, and y will represent the limit. If dim Y=n

and any basis for Y, {e,,.., e,}. Then y,,has a unique representation of the form.
Ym = a;"e; + -+ a, e,

From imposition , any €> 0 exist N thus

Vi — ¥l <€ when m,r > N .By lemma (1.3.1) we have

n n
e> llym — vl = Z(aj(m) —a;M)e|| = CZ|aj(m) — o™
j=1 j=1

17



Division by ¢ > 0 produces where m,r > N we obtian
. €
lg;™ — ;™| < Z|aj(m) — ;| < = (m,r >N)
j=1
For every of the n sequences

(¢;™) = (¢;,a;?,...) j=1,...,nlsCauchyin R or C? In order for it to

converge, if a; denotes the limit. Using these n limits therefore, a;, ... a, We

define
y =ae, + -+ aney
hencey €Y,
1y = vl = |21, ™™ = a))ej| < Zjs|e;™ — ] [le|-

On the right , ;™ — a; . Hence ||y, — yll — 0 thisis , y,, — ¥ . This shows

that (y,,,) is convergentin Y . Thus Y is complete .
1.4 Linear Operators

Let X and Y be finite dimensional vector spaces and X,Y in field K. If
T((Xlxl + Ay Xy = alT(xl) + azT(xz) fOI’ a” X1, Xy eEX and aq, ay €
K, T is also a linear operator, the mapping T: X — Y is said to be

linear.

If dim(X) = n and dim(Y) = m, choose two a basiss {e;, e, ..., e,}
for X and {f, fo, ..., fin} TOr Y. The following is how a linear operator
T:X — Y corresponds to a m X n matrix A of elements of f [19].

Definition (1.4.1)

A linear operator T is mapping T: X — Y when X and Y are vector spaces defined

on the same field K.

1) Let domain D(T) of T is a vector space and that R(T) is a range in the same
field.

18



2) Vx,y ED(T)andVa €K,
T(x+y)=Tx+Ty
T(ax) = aTx.

Furthermore for the remainder N(T) is the null space of T. Since N(T) is the set
of all x € D(T) such that Tx = 0.

Next we give some examples of linear operators. x € D(T) such that Tx = 0
Examples(1.4.1)

1) The zero operator spaces. The operator 0: X — Y is defined by
O(x)=0 forallx e X

2) Differentioation. If X is all polynomials on [a, b] and define a linear operator T
on X given
Tx(t) = x(t)
for each x € X, when the prime indicates differentiation from t .Such that
mapsT: X — X.
3) Integration space. If define T:C[a, b] — Cla, b]; T is a linear operator

defined by

t

Tx(t) = jx(t)dt it € [a,b]

a

4) Matrices. Let a real matrix 4 = [a;;] with m rows and n columns defines an

operator T:R™ — R™ by
y = Ax

Due to the standard practice of matrix multiplication, when x = (x;) hasn
components and simlary y = (y;) has m, both vectors are written as column

vectors; writing y = Ax,thus
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Since matrix multiplication is a linear operation, hence T is linear

Ym

Thus the linearity is used is proofs [6].
Theorem (1.4.1) [13]
If T is a linear operator then If dim D(T) =n < oo, T: X — Y
T:D(T) — R(T) .Then dim R(T) < n.
Proof
We choose n+1 elements yy, ..., Yn4+1 Of (T).
Then we have

Y1 =Tx1, o, Yn+1 = TXn4a
For some xy, ..., Xp4+1 in D(T). Since dimD(T) = n ,this set
{x1, ..., x,4+1} must be linearly dependent . Hence

a1X1 + o+ py1Xneg = 0
3 ay, ..., ay41, NOevery equal O.
Because T be linear and T0 = 0
T(aixy + - Any1Xn41) = @Y1+ + Quy1Yner = 0.

The fact that the a;’s are not all zero demonstrates that the set {y;, ..., Yn41} is

linearly dependent. Hence R(T) subsets of n+1 or more components that are no

linearly independent .Thus dimR(T) <n.
Definition (1.4.2)

Let T: D(T) — Y be a linear operator is said to be injective or one to one if for

anyx,, x, € D(T) , x; # x, = Txq # Tx,.

20



There exists the mapping
T~1:R(T) — D(T)
Yo %o  (¥o = Txo).

Which maps every y, € R(T) , xo € D(T) for which Tx, = y, .The mapping T~

is called the inverse of T.
We clearly have T~1Tx = x for all x € D(T)
Lemma(1.4.2) [13]

If T:X — Y and S:Y — Z are bijective linear operators , where X, Y, Z, are
vector spaces. Then the inverse (ST)™1:Z — X of the product ( the composite )

ST exists, and
(ST) t=T1"151
Proof
The operator ST: X — Z is bijective ,so that (ST)~! exists. Such that
ST(ST) =1,
wherel,, is ( the identity operator on Z) .
stratifying S~* and using S7'S =1,
we have
STIST(ST) ' =T(ST) 1 =571, =51
Applying T~ and using T™1T = I,
We obtain that

T-IT(ST) = (ST)" 1 =T"1s°1.
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1.5 Bounded Linear Operators.

"Between the one-dimensional scalar field beneath the linear space and every
linear functional, there is a linear operator". [5].

Definition (1.5.1)

If X and Y are normed space and T: D(T) — Ybe a linear operator , where
D(T) c X . If real number c exists and such that for any x € D(T), then T be

called a bounded.

ITIl = sup [ITx||
x€D(T)
lxll=1

ITx]l < cllx]].

A bounded linear operator translates bounded sets in D(T) onto bounded sets in Y,

as demonstrated by definition (1.5.1).
Next we give some examples .
Examples (1.5.1)

1) Let I: X — X is the identity operator on a normed space where X # {0} is
bounded and when ||I]|| = 1.

2) Consider examples(1.4.1) part (4)

Where X =

Note that

Since T is linear

Note that the norm on R™ is given by

22



Similarly for y € R™.

we thus obtain

1 1
m n E n E
<) (Z ) (Z )
i—1 k=1 k=1
n
m
=12 ) ) e
=h=
Thus
m n
ITx||? < c?||x||*> where c? = 22 a2
m1k=1
Then

ITx|l < cllx|l
Implies that T is bounded .
Theorem (1.5.1) [19]

Let T: D(T) — Y be linear operator , where D(T) c X and X, Y be normed

spaces. Then
1) Ifand only if T is bounded, T is continuous.
Proof

1)for=0.let+ 0. Then ||T|| # 0.suppose T to be bounded , if any ¢ >= 0 by

provided. Since T is linear, this means that for all x,, x € D(T)

like that
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llx — x|l < & when 5=ﬁ

Thus
ITx — Txoll = IT(x — x)Il < T llx — xoll < ITNI6 = €.
Since x, € D(T), hence T is continuous .
Conversely , supposing T is continuous at any given x, € D(T).
Then thereisa § > 0 given any € > 0 so that
ITx — Txq|| <€ forevery x € D(T) satisfying ||x — x|l <& .

Now take any y # 0 in D(T) and set

) )
x=xo+—vy.Then x —xo =—vy.
0T Y 0= Y

Hence ||x — x|l = &. since T is linear , we have

)

5
I7x = Txoll = 17 G = x)ll = |7 (575 )| = 55 71

. . 1)

|mpI|es”y—”||Ty|| < e. Thus ||Tyl| Sgllyll.

This can be written ||Ty|| < c|ly|l ,where c = %and T is bounded .

1.6 Linear Functionals

Definition (1.6.1)

If f is a linear functional, then f is a linear operator with a range in the scalar field

K of X and a domain in a vector space X, hence

f:D(f) = K

When K = C if X is complex and K = R if X is real.
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Definition (1.6.2)

Let's say that the domain D(f) lies in the scalar field of the normed X and that the
bounded linear functional f is bounded linear operator with rang. In light of this,

real integer c exists such that for any y € D(f).

lfF W1 < cliyll

The norm of f is

) lf I
||f|| = SUDPyep(f) ;y+0 ”y—”

or
IfIl = supyepr);iyii=1 1 F I

This implies [f(y)[ < [I£Illlyl,

Next we give some examples.
Examples(1.6.1)

DIf X =Cla, b], then

b
flx) = J x(t)dt x € Cla,b]

f is linear functional. shows that f is bounded and has||f|| = b — a. In fact,

writing /] = [a, b] and remembering the norm on C|a, b],

We obtain
If (o) = |f:x(t) dt| < [Px(®)de.
Since we have
M; = sup{f(x);xj_1 <x< xj}
M = max{x(t);a <t < b}

and since
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fG) =If®], asx<b.

Thus

b
F G0l = f x(2) dt

b
< f x(t) dt
a
= (b — a) max|x(t)|
tej
=(b —a)lx|l.
By definition (1.6.2) we obtain ||f|| < b — a.
We choose x =x,=1,

note that ||x,|| = 1

|f (xo)l

1ol

NIl =

b

= |f(x0)] =j dt=b—a.
a

This implies

Ifll =b—a.
Thus, f be bounded linear functional .

Definition (1.6.3)

A collection of each and every linear functional defined on the vector space X.

The definition of the vector space's under algebraic operations is as follows.

a) The sum f; + f, of two functionals f; and £, is the functional whose
value at every x € X is

s(x) = (L +2)®) = A1) + ().

b) The functional P is the product af of a scalar « and a functional f,
and its value at x € X be

P(x) = (af)(x) = af (x).

Thus X™ is said to the algeberaic dual space of X
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Definition (1.6.4)

The algebraic dual (X*)* of X*whose members are the linear functionals defined
on X* such that X** is referred to as the second algeberaic dual space of X if a

collection of all linear functionals defined on a vector space X.
Definition (1.6.5)

if the space X is normed. The norm of the normed space formed by the set of all

bounded linear functionals on X is defined as

IFIl = SUDM = sup |f(x)]
i% Il ||§ﬁ}=(1

Since X is said to be the dual space of X . We have X is B(X,Y) with the complete
space Y = R or C because a linear functional on X maps X into R or C (the scalar

field of X) and sine R or C, taken with a metric, is complete.
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Chapter Two
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HILBERT SPACE

A Hilbert space is made up of a vector space and an inner product that gives it the
structure of an entire metric space.

The reader is already familiar with the intermingling of algebra and geometry,
namely in the vector space R" , elements in R™ [21].

Typically, points have coordinates and vectors can be added and scaled .Moreover
, In the presence of the standard inner product, since X is normed space ; given by

n

(x,y) = Zkak X,y €X
k=1

the length of a vector provided by the norm
Iyl = Vv, y)
and angle between vectors can be computed by

(x,y)
lxNlyll

0 = arc cos

and the condition for orthogonality a.b = 0
which are important tools in many applications [4].
2.1 Inner Product Spaces .

Definition (2.1.1)

A vector space X with an inner product defined on X is known as an inner product
space (or pre Hilbert space).

An inner product on X in this context is a mapping of X x X into the scalar field K
of X. For each pair of vectors x and y, denoted as (z, w)and is said to the Inner
product of z and w, such that for all vectors z, w, and v and scalars a, we have

D{(z+w,v)=(z,v) + (W, 1)
2) {az,w) = a(z,w) and {z, fw) = B{z,w)
3) (z,w) =(z,w)

4) (z,z) 20and (z,z) =0 & z=0.
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A metric on X defined by the expression

diz,w) =|lz—w|| = \/(z -W,Z—Ww)
is called an inner product on X.
The conjugation of the bar complex is in (3). Let X be a real vector space, then
(z,w) =(w, z)

The part (2) denotes
(z,aw) = a{w, z)

Definition (2.1.2)
A complete inner product space is a Hilbert space.
Easy consequences

1) llx +ylI? = llx|I* + 2Re{x, y) + [lylI.
Proof
lx +ylI? = (x +y,x +y) = (x,x) + {x,¥) + (¥, x) + (y,¥)
= ||lx|I* + 2Rex, y) + [|yII?
2) (pythogoras) If (y,z) = 0, then ||y + z||* = [ly|I* + ||z[|>.
Proof
Since |ly +z|I*> = llyll> + 2Re(y, z) + l|z]I> by (1) then

We have (y,z) =0,thus |y +z||? = lyll* + ||z]|%.
More generally if (y;, ¥;) = 0 for i # j, then [ly; + -+ ynlI* = llylI* +

et llywll?.
Definition (2.1.3)

When (x, y) = 0, it is said that an element x of an inner product space X is
orthogonal to an element ye X . And say that x and y are orthogonal, write x L
y. Also for subsets A,B c X wewritex L A if x La and A L Bif a L b forall
a€Aandall b € B.
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Do all norms on vector spaces come from inner products , and if not , which

property characterizes inner product spaces ?

We obtain answer by parallelogram law [19].

A x X2

Fig .1. Parallelogram with sides x and y in the plane

Theorem (2.1.1) [15]
For each vector x, y, the inner product induces a norm if and only if
llx + 112 + llx — 112 = 2(Ixl1* + lIylI*)
Proof
The parallelogram law follows from adding the identities ,
llx + ylI? = llxII* + 2Re{x, y) + llylI*,

lx =yl = (x —y,x —y) = (x,x) + {x, =y) + (=, x) + (¥, )
= |Ix|I* — 2Re (x,y) + llyllI>.

Subtracting the two gives 4Re (x, y) . This is sufficient to identify the inner
product when the scalar field is R . Qver C notice that Im (x,y) = —Re i{x,y) =

Re (ix,y),so

1 2 2 . . 2 . . 2
G, yy =2 (ly +xl1* = lly = xl1 + illy + ixl|* = illy — &xI).

Define for any normed space ,

1
(o y):= 2 (ly + x|I> = lly = xI1%),

for a complex space , {(x,y) == {({x,y)) + i{{ix, y)).

So that {((y, x)) = ({x,y)) and (x, x) = ({x, x)) = ||x]|? , as well as (x, 0) =
({x,0)) = 0; (y,x) = (x,y) is readily verified by
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iy, x)) = llx + yll? = llx = iyll? = lly — ix]]? = lly + ix]|* = —4(ix, y)) .

If the parallelogram law is satisfied is the hardest part of the proof then Showing

that linearity holds. Writing
2ytx=Q+zxx)+ Wy —2),
2zxx=@+ztx)—(y—2),

and using the parallelogram law ,

4((x, 2y)) + 4(x, 22)) = 12y + x> = 12y — xI*> + 112z + x> — |12z — x||?
=2y + x|I? + 12z + x|I* — |12y — x|I* — 12z — x||?
=2|ly +z+ x> + 2lly — zII* = 2lly + z — x> — 2|ly — z||?
=8((x,y + z)) .

Putting z=0 gives ({(x, 2y)) = 2{(x, y)) , reducing the above identity to
((x,y +2)) = ({x,y)) + ({x, 2))

Thus ({x,ny)) = n{{x,y)) for n € N . For the negative integers,

((x, =y = =y + xlI”> = ll-y — x|I> = —((x, y))

while for rational numbers P =m/n ,m,n € Z,n # 0,

n{{x, 2y = ({(x, my)) = m{(x, y))

SO

({x, py)) = p{{x, ¥)).

Note that ({x, y)) is continuous in x and y since the norm is continuous , so if the

rational numbers P, — a € R, then

{{x, ay)) = lim {x, Byy)) = lim B {{x, y)) = a{(x, y)).
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Now over the complex numbers , (x, By) = f{x,y) for B € C ,and (x,iy) =
—((ix, y)) + il{(x, y)) = i{x, y) .

Hence, A norm cannot be generated from an inner product if it does not meet the

parallelogram equality condition. Can be write
Not all normed space are inner product space .
Note that example (3).

We have already seen that the inner product space R with (x, y) = xy and hence
||x|| = |x]| is a (one dimensional) Hilbert space — that is to say, every Cauchy

sequence of real numbers is convergent.

It is easily seen that a sequence of complex numbers, (a,, + ib,,), is a Cauchy
[convergent] sequence if and only if both the sequence of real parts ,(a,,), and the
sequence of imaginary parts, (b,,), are Cauchy [convergent] sequences. Thus, C

since (x,y) = xy and hence ||x|| = |x| is a Hilbert space[17 ]
Examples (2.1.1)
1)R™, C" are all Hilbert space.

C™ and R™ taken to be the standard inner product, (x, y) = Y.i=, x;¥, are both
complete. To see this (for C",the proof for R™is essentially the same ),let (x,,)m=1

be a Cauchy sequence in C",so0 each x,,is an n-tuple of complex numbers ; x,,, =

(xml' Xm2y s xmn)-

We need to show that (x,,,)is convergent. Now, for each k € N we have,

n
|xmk - xpk| = \} |xmk - xpklz = lemi - xpil2
i=1

= ||xm —xp” — 0,asm,p — oo,

Since (x,,) is a Cauchy . This shows that for each k € {1,2, ..., n} the sequence of
k’th components, (X, )m=1.iS @ Cauchy sequence of complex numbers and hence

(by the completeness of C ) convergent.
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Let x;, = lim x,,,, -
m
We have
X1 = (011, %12, X135 -+0) X1n)
Xy = (X21, X22, X23, ) X2m)

X3 = (x31; X32,X33, ) x3n)

Xm = (xml'xmz'xm3l '")xmn)
N A
X1 Xy X3, ) Xm

Now let X = (xq, x5, X3, ..., X,,). Finally, we show that X,,, — x. To this end ,note
that

lirgn”Xm - x” = 117211\/ZZ=1|ka - Xkl2

2
= (B (il — )
Since linrln|xmk — x| =0 ,fork =1,2,...,n.Thus, (X,,) is convergent (to x), as
required.
2) Space [2are Hilbert space, Hilbert sequence space 12(1912) (Integral Equations)

12, the space of square summable complex (or real) sequences with the inner
product (x,y) = X2, x;¥, , is complete. In many ways, we can regard [? as the

Hilbert space. The proof similar to that for C" given above.

Let (x,,) be a Cauchy sequence in 12, where x,, = (x,,}, x,,2, ..., x,3, ...); that s,

for each n € N we have Y5, |x,,*|? < o0 and ||x,, — x| — 0 asn,m — oo.

Then ,as above, for each k,

”xnk - xmk” = \/Z?Ozllxni - xmi 2
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= ”xn _xm” — 0

as (x,,) is Cauchy so for each k, (x,,)* is a Cauchy sequence of (real or complex)

numbers and hence convergent, to say x*.

Let x = (x1,x2,x3,...,x%,..). To complete the proof we show that x € % and
that (x,,) converges to x. Firstly, consider the partial sum ».7-,|x;|? for each m €
N. Being a sum of non-negative terms, this sum is increasing, so the partial sums

will converge if they are bounded from above. Now,
m 2 m : k 2 ; m k|2
Eialxel? = ZRk [lim x| = lim DR k[,
< lim ¥, [, |? = lim]lcy, .
n n

That this last limit exist and is finite (and hence provides an upper bound for the
partial sums) follows from the observation that (||x,||) is real Cauchy sequence ,
since (x,)is Cauchy (||[x, |l = x|l < 1%, — x| — 0) and so convergent.
Finally, we establish the convergence of (x,,)in [? by showing that x,, — x.
Now, for any € > 0, since (x,,) is Cauchy, there exists an n, € N such that

|x, — xm|l < € whenever m,n > ny. Thus, for each g € N,we observe that

(Eibnt = xn ]2 < VT = 5 P

= ||lx, — x|l < €, proved m,n > n,.

But then, for n > n, we have,

q
It = xll = Tim [y = ]2
a k=1

q
; K ; k)|
= lim Z |xn - (hm Xm )|
q m
k=1
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Showing that x,, — x.

3) Space [P. Is not a Hilbert space because with P # 2 is not an inner product

space.
We demonstrate that the norm does not satisfy theorem (2.1.1).

Let

X ={xne1 and vy = {ynpe1

(x,y) = i XY

i=1

Define inner product space on [P such that

1
i P
il = (aniup)
i=1

Let us take x = {1,0,0,0,..} € [P and y = {1,—1,0,0,0, ...} € [Pand cakulate

1
llxll = llyll =27, but |lx + yll = llx — yll =2

We now see that parallelogram equality is not satisfied if P # 2.Then [P is

complete .

4) Space C|a, b] .The space C|[a, b] be not an inner product space so that not a

Hilbert space .

Suppose that

Iyl = maxiy@ = [ab]
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This equality , Cannot be obtained from an inner product because does not satisfy

the parallelogram law .If we adopt
yt)=1and z(t)=(t—a)/(b—a),
we have

lyll=1,llzl =1 and

t—a

y(t)+z(t)=1+b_a
—1 t—a
y(®) = 2(t) =1 -1~

Hence |ly+z||=2,|ly—z|| =1 and
ly +zII? +lly—zII? =5 but 2(lyll* + llzII*) = 4.

5)For an inner product space over C . if (y,Ty) =0 forall y € X,thenT = 0.

The identities

0=(y+2zT{y+2)=(yTz)+(zTy),
0= (y+iz,Tly+iz)) =iy, Tz)—i{(z, Ty),

Together empty (y, Tz) = 0 for any y, z € X inparticular ||Tz]|? = 0.
2.2 Some Properties of Inner Product Spaces
In this section we will show some definition and theorems .
Theorem (2.2.1) [13]
Let X is an inner product , then

1) z,w)| < lizlllIw]| (schwarz inequality)

When and only when {z, w}is a set that is linearly dependent, the equality sign is

present

2) That norm satisfies
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|z + w| < |lz|| + [|w]| (Triangle inequality)
Proof
1) If w = 0, then schwarz inquality holds since (z, 0) = 0.

If w# 0. To any scalar a such that

0<|lz—aw|]? =(z—aw,z — aw)

=(z,z) — alz,w) — a[{w, z) — a{w, w)].

since [{w, z) — a{w,w)] = 0, if choose @ = (w, z)/{(w, w).
The remaining inequality is

0< ) =2y = i —

(w,w)

(z,w)[?
Wiz’

here we used (w, z) = (z, w) . Multiplying by ||w||? , taking square roots, we
obtain(1).

w=0or 0=|z-awl|?
thus z — aw = 0, so that z = aw, which shows linear dependence .

2) Wherew =0o0rz=cw (creal and = 0) are the only conditions

under which the equality sign is true.
we have
lz+wl|?={(z+w,z+w)=]z||? + (z, w) + (W, z) + |[w]|%
By part (1) in theorem ,
And from the triangle inequality we get on
lz +wll* < |zII* + 2z, w)| + [lw]|?

< llzII? + 2lizlHlwll + [lw]|?
= (llzll + lwl)?.

we obtain (2).
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In this derivation equality holds iff
(z,w) +(w, z) = 2||z][[|w]l.

From part (1) and 2Re(z, w) is written on the left side, when Re stands for the real

part.
Re(z,w) = |iz|lllw] = {z,w}| — (3)

Because the real component of a complex number cannot be more than its

absolute value, we have equality, which implies dependence by part (1)
so,w=0o0r z=cw.
Demonstrate that ¢ > 0 and be real.
From (3) and the equality sign
we obtain
Re(z,w) = |(z,w)|.

However, the imaginary portion of a complex number must be O if the real part of

the number equals its absolute value.
hence (z,w) = Re(z,w) = 0by, (3)and c =0
Thus

0 < {z,w) = (cw,w) = c||w]|?.
The Schwarz inequality can be used in proofs follwoing.
Corollary(2.2.2) [20]

Let an inner product space is X and ||-||is the induced norm , then

llzIl = sup [{z,¥)| = sup [{z,y)]
llylls1 lyll=1

Forall z € X.
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Proof

If z = 0 the assertion is obvious , so suppose that z = 0. If ||y|| < 1, then
Iz, V)| < lIzllllyll = llz|l, from theorem (2.2.1) part (1). Hence

Izl < sup [{z,y)I.
llylist

Choosing y = z/||z|| we have [{z,y)| = ||z]|?/]lz|| < |z||,So equality hold in the
above inequality. Since the supremum over |[y|| = 1 is larger or equal to that over

|ly|l < 1 ,the assertion of the corollary follows .
Theorem(2.2.3) [11]
The norm in an inner product space is strictly (||w|| > 0 whenever w # 0),

Positively homogeneous (||law|| = |a||lw]|), subadditive (||lw + z|| < ||w]|| +

lIzI[).
Proof

The strict positiveness of the norm is merely a restatement of strict positiveness of
the inner product .

The positive homogeneity of the norm is a consequence of the identity
lawll? = (aw, aw) = aa*(w,w) = |a|?|lw||?
The subadditivity of the norm follows,
using Schwarz's inequality ,from the relations
lw+z||> =(w +z,w + 2) < [wll* + [(w, 2)| + [{z,w)| + |z]|?
< lwll* + 2llwlllizl + [1zII?
= (lwll + llzI)?
lw +zll < llwll + ||z]|.
Lemma(2.2.4) [20]

Let z, — z and w,, — w in an inner product space then
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(Zn, W) — (z,w).
Proof
Using the theorem(2.2.1) part (1)and part (2) we have
[(zn, W) = (2, W)| = [(zn, W) = (zn, W) + (zp, W) — (z, W)]|
< [zn, wn = W) + [(z, — 2, W)
< llzallllwn = wil + llzn, — zllllwll — 0
Sincew, —w — 0and z, —z — 0 as n — oo,
Then |{(z,, wy,) — (z,w)| — 0.

2.3 Orthogonal and Orthonormal sets.

The distance d between an element in a metric space x € X and a nonempty subset
M c X is defined as

d =infyey dx, 9)
Becomes in a normed space
d = infyem lIx = Pl
We shall show that it is crucial to know whether a y € M exists, so that
d=|lx-yll
We show some definitions and theorem [13].
Definition (2.3.1)
A segment joining givenbyz =ax+ (1 —a)y (@ €R,0<a<1)
is two elements x and y of a vector space X is defined the setofeveryz € X .
Definition (2.3.2)

If the segment joining x and y is contained in M for any x,y € M, then the subset

M of X is said to be convex.
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If M is a convex set then the theorem(2.3.1) answers on the previous questions .
Definition(2.3.3)

If N is a normed space and M a non-empty closed subset. We define the set of

projections of y onto M by
Py(y) ={m € M:|ly — m|| = dist(y, M)}.

The meaning of Py, (y) be illustrated in Figure(2) for the Euclidean norm in the

plane.

Fig.2. The set of nearest point Projections

Theorem (2.3.1) [13]

If M + @ is a complete convex subset and X be an inner product space. Then,

there exists a unique y € M,V x € X so that
d = infyem llx = Fl = llx = yll.
Proof
1) There is sequence (y,) in M by the definition of an infimum
hence
d, —d where d, = |lx —y,ll
Lety, —x = v, ,weobtain ||lv,|| = d,, and
10 + Vil = 1 + Y — 2201 = 2 |[30 + ym) — 2| = 2
because M is convex , so that (¥, + y,) € M.

Furthermore , we have y,, — y,, = v, — V.

42



Hence by the parallelogram equality,
1y = Ymll? = 1oy = vnll? = =llvn + vill? + 2(lvall? + v 1)
< —Qd)? +2(dp* + dn?),

since

d, — d where d, = ||x — |l
implies that (y,,)is Cauchy and converges;
M is complete , such that, y,, — y € M.
Since ||lx —y|| >d ,y € M. From
dn —d where dy = |lx —yall,
lx = yll < llx = yull + llyn =¥l = dn + llyn = yll — d.
This shows that ||[x — y|| = d .

2) Lety,y, € M both satisfy
lx —yll =d and |lx — yoll = d

and then y = y,.

From theorem (2.1.1) ,
ly = yoll? = Iy = x) — (o — 0)II?
= 2|ly — xII* + 2llyo — x> = Iy = x) + (vo — I
2 2 2 |2 2
= 2d% +2d% - 22 |2y + yo) - x| .
On the right, >(y + y,) € M , so that
50 + o) = x|[ = d

implies that 2d? + 2d? — 4d? = 0 is more than or equal the right- hand side.

Hence
ly = yoll <0
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S0, |ly — yoll = 0, so that we must have equality, and y = y, .
Theorem (2.3.2) [20]

Suppose a Hilbert space is H, M c H a non-empty closed and convex subset.

Then for a point m,, € M the following assertions are equivalent;

1) my = Py (y);

2) Re(m—m,,y—m,)<0forallmeM

y—my

Proof m, = Py(y)

. m— My
By translation we can assume that m,, = 0 . m

Assuming that Fig.3. Projection onto a convex set

m, =0= Py (y)

By definition of Py (y) , llyll = lly = Oll = inf lly —ml|,

so ||lyll < |ly —m]|| forallm € M . As o,m € M and M is convex we have
Iyll? < lly — tm|> = |lyll> + t?||ml||* — 2t Re(m, y)

forallme Mandt € (0,1] .

Hence

t 2
Re(m,y) < = [|ml

forallme M andt € (0,1] . If we fix m € M and let t go to zero, then
Re(m,y) < 0 as claimed . Now assume that Re(m, y) < 0 for all m € M and that

0eM.

We want to show that 0 = Py (y) .If m € M we then have
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ly —mll? = Iyl + lImll*> — 2 Re(y, m) = ||ylI?
since Re(m, y) < 0 by assumption . As 0 € M we conclude that
Iyl = inf lly = mll,
so 0 = Py, (y) as claimed .

Every vector subspace M of a Hilbert space is obviously convex . If it is closed ,
then the above characterization of the projection can be applied .

The corollary also explains why Py, is called the orthogonal projection onto M .
Corollary (2.3.3) [20]

In Hilbert space H , M is a closed subspace. Then m, = Py (x) iff m,, € M and

(x—m,,m)y=0,YmeM.
Moreover , Py: H — M is linear .
proof

By the above theorem m, = Py (x) if and only if Re(m,, — x,m —m,.) < 0 for all

m € M. Since M is a subspace m + m, € M foralle M ,
So using m + m,. instead of m we get that

Re(m, —x,(m+m,) —my) = Re(m, —x,m) <0

Fig.4. Projection onto a closed space

Replacing m by —m we obtain

—Re(m, — x,m) = Re(m,, — x,—m) < 0,
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so we must have Re{(m,, —x,—m) =0 Vme M .

Similarly, replacing m = +im if H is a complex Hilbert space we have
+Im(m, — x,im) = Re(m,, — x,+m) < 0,

Also m(m, —x,m)=0.

So that (m,, — x,m) = 0 for all m € M as claimed . It remains to show that P,, is

linear . If x,y € H and, 8 € R, then by what we just proved
0 = afx — Py(x) ,m) + B(y — Py(y) ,m)

= (ax + By — (aPu(x) + fPy (), m)

for all m € M . Hence a gain by what proved Py, (ax + By) = aPy(x) + fPy (),
showing that P,, is linear .

Lemma(2.3.4) [13]

If M is a complete subspace Y and x € X fixed. Assume that X is an inner product

space. Then z = x — Y is orthogonal to Y.
Proof
Let z L Y were false, y; € Y would exist.
sothat (z,y,;) = B # 0.since,y; #0
otherwise (z,y,) = 0,
furthermore , for any scalar «,
lz—ay; > = (z—ay,,z — ay; )
=(z,z) — a(z,y,) — a[{y1, 2) — @&y, y1)]

=(z,2) - ap — a[B — @y, )]

The expression in the brackets [ — @(y,, y1)] is zero if we choose @ = ——
1,1

We have ||z|]| = ||[x — y|| = d, so that our equation now yields
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2
151 <2
(Y1, y1)

lz — ayI? = llz||* -

but this is impossible because we have
zZ—ay;, =x—y,where y,=y+ay, €Y,
So that ||z — ay, || > d by the definition of d .

Hence (z, y;) = f # 0 cannot hold and, the Lemma is proved .

2.4 Orthogonal Complements and Direct Sums.
Definition (2.4.1)
If subspaces Z and W of a vector space X then X is called the direct sum ,such that
X =7ZW,
if any x € X is represented a unique
x=z+w,z€Z ,weW.

When this occurs, Z and W are called complementary pairs of subspaces in X and
vice versa and W is said to the algebraic complement of Z in X.

The main interest concerns representations of H, in the case of general Hilbert

space H

The orthogonal complement is a direct sum of a closed subspace Y such that
It ={weH;wlZ}

It’s the set of all vectors orthogonal to Z .

Theorem (2.4.1) [11]

If Z is each closed subspace of Hilbert space H. Then

H=Z7ZW
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Proof
Since Z is closed and Z, H are complete.
Since Z is convex , for every x € H thereisa z € Z such that
x=z+w wew=727%
To prove unigueness , suppose that
x=z+w=2z+wy
wherez,z; € Z and w,w; € W
Then z —z; =w; —w.
Since z—2z, € Z whereas w; —w € W = Z4,
and z—2z, € ZN Zt = {0}.
This implies z = z;. Hence also w; = w.
Theorem (2.4.2) [1]
Let linear operator be T from vector space Y into vector space X. Then
dimY = dimker T + dim R(T).
Proof

We assume that B is completed for kerT space in Y
imply that Y = ker T @B . Then

dimY = dimkerT + dim B.
Such that
dim B = dim R(T)
Implies

dimY = dimkerT + dim R(T) .
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Since P is a bounded linear operator.Where P maps H onto Y, and maps Y onto

itself,
z=Y!onto {0},
and P is idemptent , thatis P?=P;
hence , forall x € H, P2x=P(Px) = Px .
Lemma(2.4.3) [13]
If H is a Hilbert space and Z be a closed subspace of H ,then Z = Z++
Proof
we have Z c Z++ because y € Z
implies y L Ztand y € (Z11)
Now. Let € Z++ . Then
y=z+w where z€ Z c ZtL.
Sincey € Z1+ becuse Z** is a vector space,
we havew =y —z € Z14,
hence, w L Z+ . Buty € Z+. Together w L w,
so that w=0, y=z, thus, y € Z.
Since y € Z1+ this proves Z++ c Z.
Theorem (2.4.4) [15]
The orthogonal space of subsets B c Y,
Bt={yeY;(y,b)=0,Yb€B},
satisfy
1) BnBtc {0},

2) B+ be aclosed subspace of Y.
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Proof

1) Letavector b € B isin B+, then its orthogonal to all vectors in B,
including itself , (b,b) =0,s0b = 0.
2) Lety andzarein B+ and b € B, then

(ay,b) = ay,b) =0,

(y+2z,b)=(y,b) +(z,b) =0,
So ay,y +z € B*. Ify, € Btand y,, — y, then
0=(y,,b) — (y,b),and y € B-.

Theorem (2.4.5) [13]

S+ = {0} iff the span of S is dense in H for each subset S # @ of a Hilbert

space H .
Proof

assume S+ = {0}. Letz L V,thenz L S, hence z € St and z = 0. Thus V+ =
{0}. Such that V is subspace of H, we obtain V = H withZ = V.

Conversely, If z € S+ and suppose V = span S is dense in H .
TheneV =H.

This implies the sequence (z,,),which is existed in V such that z,, — z.
Sothatz € Stand S* 1V,

since (z,,z) = 0.

By Lemma (2.2.4) implies that
(z,,,2) — (z,2).

Together, (z,z) = ||z||?> = 0,

thus z = 0. Since z € S*, hence S* = {0}.
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Theorem(2.4.6) [15]

Let M is a closed vector subspace of a Hilbert space H ,then w € M is the

closest pointwto z € H ifandonly, z—w € M+

The map p: z — w is a continuous, orthogonal projection with Imp = M
orthogonal to ker P = M+, so H = MM+

Proof

1) If a be any nonzero point of M and let ¢ := z — (W + ab) where a is

chosen
Sothat L ¢, thatis, a = (b,z — w)/||b||?.
By(Pythagoras) ,we get
lz = wli? = llc + abll* = lic||? + llabll* = |lcll?

Making w + ab even closer to x than the closest point y , unless
a=0,(b,z—w)=0.

Since b is arbitrary , thus (z —w) L M.
Conversely , let (z—w) L b foreach b € M, then (z—w) L (b—w) and
(Pythagoras) implies
2 = BII" = llz = wil? + flw = BII",
Sothat [lz—wll < ||z — b|| , let w the closest point in M to z.
2) Forany z € H ,P(z) is that unique vector in M such that
z—P(z) e M+,
This characteristic property has the following
P is linear since (z + w) — (pz + pw)=(z — pz) + (w — pw) € M,

pz +pw € M, hence p(z+w) =pz+pw.
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Similarly, p(az) = apz.

The closest pointin M to b € M is aitself, pb = b,so Imp = M.

Since pz € M, it also follows that p%z = pz, and p? = p.

When € M+ ,thenz—0 € Mt and 0 € M so pz = 0.

Aspz = 0implies z = z — pz € M+ | this just itself kerp = M.

since ||z||? = ||z — pzl|* + ||pz]||? ,P is continuous

thus lpz|| < |zI|.

hence H = Im p@®ker p = M@®M+ since any vector can be decomposed as

z=pz+ (z—pz) ,and M n M+ = {0}.

2.5 Orthonormal sets and Sequences
In this section we will show some definition and important theorem .
Definition (2.5.1)

Let X be an orthogonal set M in the inner product space X is asubsetof M c X
with pairwise orthogonal elements. For all y,z € M,

(0 ify+#z
<y’Z)_{1 if y=z

making an orthonormal set M c X an orthogonal set in X with elements of norm 1.

An indexed set or family, (y,), « € I ;is called orthogonal if y, L

yg forall a,p €1 a = [ isan orthogonal or orthonormal set M is countable,

the sequence (y,,), and it is an orthogonal or orthonormal sequence.
If family is orthogonal and all y, have norm 1 ,then it is called orthonormal
forall a,p € I hence

0 if a#p,

<ya’yﬁ) = SaB = {1 if a=0§.
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Here , S,z is the kronecker delta .
Next we give some examples.

Examples(2.5.1)

1) Space [2. In this space, (e,) is an orthonormal sequence when e,, =
(Sn;) has the n" element 1 and all others zero

2) Space R3.(1,0,0),(0,1,0),(0,0,1) is three unit vectors in this space.
Theorem (2.5.1) [13]

If an orthonormal set then is linearly independent .

Proof

If {e,, ..., e,} is orthonormal and consider the equation

aeq + -+ aze, = 0.

Zaiei =0

Multiplication by a fixed e; gives
<Z;'l=1 aiei 'ej> = :r]'l=1 ai (ei ,ej) = aj(ei Iej) = a} = O H v] = 1) . N

The following theorem, Gram Schmidt, which proves shows how to transform the
linear independent sets

Into orthogonal sets, and to transform these sets into orthonormal sets in the inner

product spaces.
Theorem (2.5.2) [19]
Let X inner product space
If {y,}n=1 linearly independent sequence in X, then there sequence {z,}o -,
from orthonormal vector such that

span{y,} = span{z,}.
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Proof

Note that y, # 0 for any n. Because set {y,} is linearly independent.

Let
1241
=9 W1i=W
lwall
w
Zy = IIWEII JWo =Y, —(¥2,21)74
n
Wn+1
Zp+1 = 'Wn+1 = Vn+1 — Z<Yn+1 ) Zk) Zg
IWr gl ~

k=1
note that z; L w,, and also w,,,; orthogonal with for every z,,z,,...,2,
note that {z, };—, is orthonormal,
and z,, is linear combination for element y, ,y,, ...

Conversely , hence

span{y,} = span{w,}

The following result determined the linear combination for the elements of

orthonormal sequences .
Theorem (2.5.3) Bessel inequality [15]

If the orthonormal sequence{y,}n=; in an inner product space X . Then Vy € X

Dol < yie
j=1

Proof

We have

2
v,y < Ky vy 12 < Ky, y)l? < -
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This show that sequence {Z?=1|(y ’yj)|2} as bounded increasing series,
n=1

then

Yy, yj)|2 is convergent.

Now
n n
OS<y—Z(y,y,->y,-,y—Z(y,yj>y,-)
j=1 j=1
n
2 2
=lyllZ= > [{y.y)|
j=1
hence

n
Dol < ivie
=1

As n — oo we obtain

© 2
Ll )| < llyll*.
Definition (2.5.2)

Let H is a Hilbert space and {x;} be an orthonormal sequence in H, then for

every x € H,

The Fourier coefficient of x is (x, x;) and Y:72,(x, x;) x; IS
Fourier series with respect to {x;} .

Definition (2.5.3)

In normed space V , {x,} be a sequence, say that )., x,, converges and has

Sumx (X, x, = x) if YN_,x, > xasN — oo,

lx=XN_ x|l 0 as N — oo,
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Theorem(2.5.4) [11]

If {a;} is asequence in C ,and if {e, } be an orthonormal sequence in Hilbert

space H .Then Y5>, aje, converges in Hiff Y50 |ay|? < oo.
Proof
(=)Letx = ¥, arer and x, = YN_; ayey, then (xy , ex) = ay for k < N.

and taking N — oo, gives (x, e;) = a;.Then by Bessel inquality

(o) (o8]
Dl = ) 1x el < lxll? < e
k=1 k=1

(=)

Assume that Y7 |ax|? < oo, and let x, = Y ¥_, ayex. Then

N+p 2 N+p
2 2
lnap = 2n||” = ae|| = ) lagell
k=N+1 k=N+1
N+p
= z lax|> = 0 as N — oo,
k=N+1

Therefore {xy} is Cauchy, and it convergesinH .

Theorem (2.5.5) [13]

If H a Hilbert space and (e, ) is an orthonormal sequence in H .Then

let 31—, arey converges , then the cofficients a; are the Fourier cofficients
(x, ex) , when x denotes the sum of }i°_; arex ; hence, Y7, arex

can be written

00}
X = Z(x, ex) ex-
k=1
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Proof

By using the orthonormality and taking the inner product of s,, and e; and, we

obtain

(spe)=aj forj=1,..,k (k<n and fixed).

By assumption , s,, — x. By Lemma (2.2.4),the inner product is continuous
a;j = (sp, e) — (x,¢€;) (G < k).

and take k(< n) as large as we please because n — oo,

hence

aj =(x,e;) forevery j=12,..

Lemma (2.5.6) [13]

forany x € X if X is an inner product space can have at most countably many
nonzero Fourier coefficients (x, e; ) with respect to an orthonormal

family(ey), k € I,in X.
proof
We can associate a series similar to x = ).,;°_,(x, e;) e, for any fixed x € H

Yrerlx, er) e, and we can arrange the e, with (x, e;) # 0 in a sequence
(e1,€5,...) ,s0that Y, c(x, ex) e, takes the form x = Y ;7_,(x, ex) ex.

convergence by Theorem (2.5.5) .

If (w,,,) is a rearrangement of (e,,). In order for the corresponding terms of the
two sequences to be equal , since there exists a bijective mapping n — m(n)

of N onto itself . Thus , wy,;) = e, .
We set

an =(x,e,) , Bm = (X, W)
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and

[ee]
(o]
X1 = § anén ’ Xy = E BmWm.
n=1 me1

Then by Theorem (2.5.5),
an =(x,en) = (x1,€n) , B = (X, W) = (X2, Wiy).
Since e, = wy,; ) ,We thus obtain
(X1 — X3, ) = (X1, €n) — (X2 'Wm(n))
= (x,en) = (X, W) =0

and similarly (x; — x, ,w;;,) = 0. This implies

Iy = 2l = Gy = %z, Y tnen = Y B
= Za_n<x1 — Xy, €n) — Zﬁ(% — X2, W) = 0.
Consequently , x; —x, =0 and x; = x5, .
Since the rearrangement (w,,,) of (e,,) was arbitrary .
2.6 Total Orthonormal Setes and Sequences.

Definition(2.6.1)

An orthonormal set A in an inner product space X cannot be expanded to a larger
orthonormal set and X is maximal if the only point in X which is orthogonal to
every y € Ais 0. Also A is total if its span is dense in X ; in this case , every y €

Xsothatasy = Y .ca(y, e) e ,and A is said to be an orthonormal basis of X.
span A = X if and only if A is total in X.
Theorem (2.6.1) [19]

If X is an inner product space and B be a subset of X. Then
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1) Let B be total in X, there is no nonzero x € X that is orthogonal to each

element of B;
x1lB =>x=0

2) Let X be complete, then the totality of B in X is sufficient satisfies that

condition.
Proof

1) If X'is considered a subspace of H and H is the completion of X, then X is
dense in H. Considering that B is total in X, span B is dense in X and hence
dense in H. Theorem (2.4.5) now implies that the orthogonal complement
ofBinHis{0}.IfxeXand x L B,thenx =0.

2) LetBsatisfiessx L B = x = 0 and X be a Hilbert space, hence Bt =
{0} , then Theorem (2.4.5) implies that B is total in X .

Theorem (2.6.2) [13]
If a Hilbert space is H .Then

1) Assuming that H is separable, each orthonormal set in H can be countable.
2) Let H contains an orthonormal sequence that is total in H, then H can be

separable.
Proof

1) Let M any orthonormal set and B any dense set in H. Then
any two distinct elements x and y of M have distance v2 Thus
lx —yllZ=2.
Since N, of x and N,, of y are spherical neighborhoods radius v2/3 disjoint.

Thereisa b, € Bin Ny and ab, € Bin N, and by # b, ,since B is dense in

H

since N, N N,, = @ . Because of this, if M were uncountable, there would be an

infinite number of these pairwise disjoint spherical neighborhoods ( Vx € M
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one of them), making B uncountable. Given that B might be any dense set,
separability is contradicted since H cannot contain a dense set that is

countable. This leads us to the conclusion that M must be countable.

2) Assuming that (e;) is a total orthonormal sequence in H the set of all

possible linear combinations
a,Me, + a,We, + -+ a,Me, n=12,..
where a;, ™ = q, ™ + ib,™ and a;, ™ and b, ™ are rational
(and b,™ = 0if Hisreal).Ais countable.

By showing that for every z € H and € > 0 there isa v € A such that

||z — v|| < € to prove that A is dense in H.

There is an n such that Y,, = span {e, , ...e,,}, So that (e;) is total in H
We obtain

|z—y|| < €/2 for the orthogonal projection y € Y,, and z on Y,,.

Now

n
Y = Z(z, er) e-
k=1

Hence

<e€/2

n
Z — Z(Z, ek> €
k=1

The rationals in R are dense, for every (z, e;) exist ak(”) such that

n

Z[(Z; ex) — ak(n)] €k

k=1

< €/2.

Hence v € A defined by
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n
v = Z a,™ ey

k=1

satisfies

le=vll = [z =) @ e
< ”z - Z(z, ex)ex ” + ”Z(Z, exlex — z “k(n)ek”

<€ef/2+¢€/2=cE€.

This proves that A is dence in H, since A countable and H is separable .
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Chapter Three
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3 Linear Operators on Hilbert Spaces

We have discussed basic concept of linear operators already. and this section here
we want to prove some quiteun expected results on bounded linear operator on
Hilbert spaces.

3.1 Linear Functionals on Hilbert Spaces.

Riez's Theorem (3.1.1) [13]

Let H a Hilbert space and f be bounded linear functional on H then H is

equivalent to the inner product,
fx) = (y,w),
When w depends on f, f determines it uniquely, and its norm is
Iwll = 1I£1l
Proof
If f = 0.Then f has a representation if we take = 0 .
Let # 0, this implies w # 0, thus otherwise f = 0.

And (y,w) = 0,V y, where f(y) = 0, such that, for everyy in the null space
N(f)of f.Thusw L N(f). The implication is that we take into account
N(f)and its orthogonal complement N(f)* .

N(f) be closed and a vector space. N(f) # H is implied by f # 0,
thus N(f)*1 # {0}. Hence contains a w, # 0. we set
u= f(ywo — f(wo)y,

where y € H is arbitrary Applying f, hence

f@) =ffwe) = fwo)f(y) =0
thus € N(f) . since wy L N(f),
we obtain

0 = (u,wo) = (f(MIwo — fF(Wo)y,wo)
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= f(){wo , wo) — f (Wo)(y, wo).
Noting that (w, , wy) = |lwg||? # 0, we can solve for f(y).

hence

_ f(wo)

f) Wo  wa)

(y' WO)-

Since it was arbitrary, this can be expressed as f (y) = (y, w) where

_ f(wo)

T (wowp)
We prove win f(y) = (y,w) is unique .
Suppose that for € H ,
f) = y,wi) =y, wy).
Then (y,w; —w,) =0 foreveryy.choosing=w; —w,,
we have
(Y, wi —wp) ={w; —wy, Wy —wp) = [lwy —w,|> = 0.

Hence w; —w, = 0, so that w; = w, , the uniqueness .
Now
Let f =0,thenw =0 and ||w|| = ||f|| hold.
If f # 0. Then w # 0 with y = w and we obtain

Iwll? = (w,w) = f(w) < lIfIllIwll.
Divided by ||w]|| # 0, the resultis [[w|| < [|f]l.— (1) .
From the Schwarz inquality we see that

IF W1 = Ky, wil < llyllliwll.

This implies
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IfII'="sup [{y,w)| < [Iwll.
llyli=1

Il < liwll — (2)
By (1) and (2) we obtain
A1 = liwll
3.2 Sesquilinear Form.

We showing some definition and theorem in this section.
Definition (3.2.1)

If k = (Ror C) and Y ,Z are vector space on field k .Then a sesquilinear form h

onY X Z be a mapping
h:YXZ — k
Vy,y,¥, €EYand V z,z,,z, € Z and all scalars a, 3,

1) h(y1 +¥2,2) = h(y1,2) + h(y2, 2)
2) h(y,z1+2;) = h(y,z1) + h(y, 2,)
3) h(ay,z) = ah(y,2)
4) h(y,PBz) = Bh(y,2).

So that in the first argument, h is linear, while in the second, it is conjugate

linear.
let Y, Z both is real( K = R), thus

h(y, Bz) = Bh(y, 2)
Definition (3.2.2)

If Y is a vector space on the field K .A Hermitian formshonY X Y isa

mapping
h:Y XY — K

foreveryy,z,w €Y and a € K,
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h(y + z,w) = h(y,w) + h(z,w)
h(ay,z) = ah(y, z)
h(y,z) = h(y,2)

If a sesquilinear form h on Y has the property following, it is said to be

nondegenerate .

Lety eYbe h(y,z) =0 VzeY , theny=0;

IfzeY ish(y,z) =0 VyeY,thenz=0.

In particular , forms are Hermitian positive definite sesquilinear.

It is clear that they are nondegenerate. Nonegative sesquilinear forms are
sequilinear forms that satisfy the weaker requirement, which is forany y €

Y,y#0,h(y,y) 2 0.
Theorem (3.2.1) [19]

If the complex vector space X and nonegative sesquilinear form is h on X.
Then,

|h(x,y)|? < h(x,x)h(y,y) forallx,y € X.
Proof
If h(x,y) = 0, the inquality is , true .
Suppose h(x,y) # 0.
Such that a , 8 any arbitrary complex numbers ,we have
0 < h(ax + By, ax + By)
= adh(x,x) + afh(x,y) + aBh(y,x) + BBh(y,y)
we have

Bh(y,x) = aBh(x,y)
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1)

Since h is nonnegative . Now
If « =t isreal and set
B =h(x,y)/|h(x, y)l.

Then,

Br(y,y) = |h(x,y)l and B = 1.
Hence,

0 < t2h(x,x) + 2t|h(x,¥)| + h(y,y)

T is an arbitrary real number t . Hence ,the discriminant

4|h(x,y)|? = 4h(x,)h(y,¥) = 0,
Definition (3.2.3)

If a Hilbert space is H. If there is a positive constant M such that |h(x, y)| <

M||x|||ly|| for all x,y € H, then the sesquilinear form h is said to be bounded.

The norm of h is defined by

|h(x, )l

lhll = sup |h(x,y)|= su :

||x||=||§||=1 Y xEH,ypeH x|yl
x#+0+y

Examples (3.2.1)

Assuming H is a Hilbert space, part (1) of the theorem (2.2.1) states that the
sesquilinear form h: H x H — C defined by h(y, z) = (y, z) is bounded .
lkll = 1.Indeed, |h(y,2)| = |(y,2)| < llyllllzIl,

and so, ||hll < 1.Forz=1y, |h(y,2)| = |y, )| = lIyl> = 1if llyll = 1.
2) LetT:H — H be a bounded linear operator ,then

h(z,w) = (Tz,w) is a bounded sesquilinear forms with|||| = ||T|].

Indeed , Vz,w € H,||z|| = |lw|] =1

|h(z,w)| = [(Tz,w)| < [ITz|lllwll < [IT]l
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Hence,

IRl < IIT1I.
On the other hand ,for w = Tz,
e lh(zTz)| _ Tzl _ IITZII'
zITzll  llzlITzll Izl
which implies
Al =TI

Theorem(3.2.2) [13]

If H, ,H, are Hilbert spaces and
h:Hy xH, — K

a bounded sesquilinear form. The a representation of h is then
h(y,w) = (Sy,w)

where a linear operator S: H; — H, is bounded.

S have norm ||S|| = ||k|land be uniquely .

Proof

If h(y,w) is linear in , we keep y fixed.There is v so that
h(y,w) = (w,v)

Hence
h(y,w) = (v, w).

here v € H, is unique but , depends on our fixed y € H;. Defines an operator

S:H; — H, given by v = Sy.

Thus

h(y,w) = (Sy,w)
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Prove that S is linear.
(S(ay1 + By2),w) = h(ay, + By, w)
= ah(y, w) + Bh(y,,w)
= a(Sy,, w) + B(Sy2,w)
= (aSy, + BSyz w)
for all win H, , so that
S(ay, + By2) = aSy: + Sy,

S is bounded. In case S = 0 ,we have

I<Sy,W>I o i SV, 5P ISyll _

||| = > sup = sup
IIyIIII I y==o Iy I[1ISyll y:tO Tyl —

This proves boundedness. Moreover , ||| = ||S]I.

Now

) S
I( ol _ II yllliwll

IIhII— <
IIyIIII 1= 50 Tyllwl]

= lIS1].

Sis unique. For every y € H; and w € H, ,we have the following thanks to the

linear operatorT: H;, — H, such that
h(y,w) = (Sy,w) =(Ty,w),
we see that (Sy — Ty,w) = 0.
sothat Sy = Ty forall y € H; .
Hence S =T
Corollary (3.2.3)[19]

Let S is the bounded sesquilinear functional satisfies the condition

1Sz, )| = 1S(v,2)|,2,y €H,
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then

|S(z, 2)|
S| = sup

zen || z]|?
llzll=o

Proof:
It is evident that the supermum in issue is a potential value of M that satisfies
1S(z,2)| < Ml|z||?

It follows that

|S(z, 2)|
S| < ;
IS11= 5P e
lizll0
but one the other hand,
|S(z, 2)| |S(z, y)I
sup — o= < = lIAll
zeH ||z zenyen ||Z|[[[ vl
llzll=0 Z£0%EY

3.3 Hilbert-Adjoint Operator

"Bilinear form research on a Hilbert space when H is a Hilbert space, B(H) is
called a specific Banach algebra exists. A canonical bijection T — T** with
appealing algebraic features is admissible in the algebra B(H) of bounded linear
operators on H. Moreover, several features of T can be explored using the self

adjoint operator T* "[18]
Definition (3.3.1)

When H,, H,are Hilbert spaces, T: H; — H, is a bounded linear operator. For
(Tx,y) ={(x,T*y) Vx € H,y € H, ,the Hilbert adjoint operator T* of T is the

operator T*: H, — H;.
Theorem (3.3.1) [13]

If T* is Hilbert-adjoint operator of T Def (3.3.1) exists , be a bounded linear

operator and unique with norm
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1Tl = ITIl.

Proof
The formula
B(y,x) = (y,Tx)

since the inner product of sesquilinear and T is linear, defines a sesquilinear form

on H, X H;. The formula's conjugate linearity is seen from
B(y,ax, + Bx;) = (y,T(ax; + Bxy))
= (y,aTx; + BTx,)
= a(y, Tx;) + B(y, Tx,)
= @h(y,x;) + Bh(Y, x2).
B is bounded .
1By, )| = [y, T} < lIyllITx|l < (Tl 1l.
Implies
IBIl < IIT]I.
we obtain ||B|| = ||T]| from .
181 = sup LN 5 o W T

= sup = sup
x=0 [|[ylllIx]l — x=o0 ITx|llxI|
y+0 Tx+0

=TIl

IBIl = IITII.
By Theorem(3.2.2) ,we obtain
B(y,x) =(T"y,x),

and since T*: H, — H, is a bounded linear operator that can a uniquely be

computed once and whose norm is

W71l = MBIl = NITIl.
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Thus

Tl = IITI|.
Also (y, Tx) = (T*y, x) by comparing B(y,x) = (y,Tx) and B(y,x) = (T*y, x),
so that we have

(Tx,y) = (x,T"y)
If taking conjugates , and can be see that T* is the operator.
Remarks .[13]

If T is a linear operator with bounds then ,T = 0 iff , (Tx,y) =0 Vx,y € H.T =
0 means Tx = 0 for every x € H and thus (Tx,y) = (0,y) = 0. Now if ,
(Tx,y)=0forall x,y € H impliesTx =0 V x € H, which ,can be write T =0.

Now showing some general properties of Hilbert adjoint operators.
Theorem (3.3.2)[19]

If H; , H, are Hilbert spaces , a any scalar and S: H, — H, and T: H; — H, are

a bounded linear operators. Then

1) (A"y,z) ={(w, Az) (z € Hy,w € Hy)
2) (S+A4) =S +4"

3) (ad)" = aA”

4) (A=A

5) llA*All = lAA*]| = llAll?

6) A*"A=0ifandonlyif A=0

7) (SA)*=A'S” (assuming H, = H,).

Proof

1) We have (A*w, z) = (z, A*w) then

(z, A*w) = (Az,w) = (w, Az).

2) Forallzandw,
(z, S+A)'W)=(S+A)z,w)

= (Sz,w) + (Az,w)
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=(z,S'w) + (z, A*w)
=(z,(S" + A)w).
Hence (S + A)*w = (5* + A*)w for all w which is (§ + A)* = (§* + 4%)

3) Now
((ah)*w, z) = (w, (add)x)

= (w,a(Az))
= a(w,Az)
= a(A*w, z)
= (ad*w, z).
And this hold for all w € H, and obtained (a¢A)* = aA".

4) Forall z € H; and z € H, we have
((A")"z,w) = (z, A"'w) = (Az,w)

This implies that
((A)*—A)z,w) =0 forallw € H,,
and
AH)*—-A=0.
Hence
(49" = A.

5) We see that A*A: H, — H,, but AA*: H, — H,
By the Schwarz inequality,

1Az||* = (A, Az) = (A* Az, z)
< |4 AzllllzIl < |A*AllllzI1?.
Taking the supremum over all z of norm1, hence

142]] < [|A*All.

73



We thus have
1421 < [1A"All < A1l = NlA]1%.
Hence |A*All = |IAll?
Replacing A by A", we have
A=Al = 147117 = NlA]1%.
Here A*A = A so that
A All = AA™]| = [|AlI%.

6) If A*A =0,then ||A]|2 = ||AA*|| = 0 this implies that A = 0,
butif A =0, then ||4A]| = ||A]|? = 0 this implies that A*A = 0.

7) (z,(SA)'w) = ((SA)z,w) = (Az,S5*w) = (2, A*S"w).
Hence (SA)*w = A*S*w forall w € H; = H,.

Definition (3.3.2)

If A is algebra over C . An involution is a mapping T — T*of A into itself that
holds, VT,S € Aandeverya € C.

T* =T, (T+S) =T"+S" (aT)* = aT*,(TS)* = S*T".

An algebra with an involution is called an a* algebra space. A normed” algebra

is a normed algebra with an involution.

A C*-algebra is a Banch algebra A that has an involution satisfying ||T*T|| =
711> .

ITIZ = IT*TI < IIT*IIITIl
which implies ||T|| < ||T*|| provided T # 0 .

Replacing T by T*and by using T** = T, we obtain ||T*|| < ||T|| .Thus, ||T|| =

|IT*|| for T € A, since the equality is trivally true when T=0 .
Remak[15].

The true analogues of complex numbers are normed operators ; Note that
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T4 T-T
T Tl

T+T
where =

* T-T* . .
and —are self-adjoint and

*

T+T* T-T*
= —1 .

2 20
Real and imaginary parts of T are the operators T+2T and %

Next we give some examples.
Examples (3.3.1)

1) Letis C with conjugacy C ¥ has an involution

(le ...,ZN)* = (Z_l' ...,ZN)

This example extends to [ .

2) €[0,1] with conjugacy f(z) = f(z) .

3) Define TT:C™ — C™ by setting(Tx); = ¥j-; a;jx; , if H = C™ the
Hilbert space of finite dimension n, and {ey, e,, ..., e, }be the common
orthonormal basis for H.

T is obviously linear and bounded as a result. Given that the inner product inC ™ is
<x! y) = Z?:l xi:)7l

n

Tx,y) = ) (105

i=1
n

n
(3 )
i=1 J=1

n

n
=D

Jj=1

=1

=(x,T"y),

where (T*y); = X1, @, y; . The adjoint of T.
Y)j i=1 4y
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3.4 Special Classes of Operators.

"The classes of bounded linear operators of significant practical value have been
investigated in this section using the Hilbert adjoint operator, which is defined as
follows". [19].

Definition (3.4.1)
Let T a bounded linear operator on a Hilbert space H,T: H — H is said to be

1) T is Hermitian or self —adjoint if T* =T,
2) If T is bijective and T* = T~1, then T is unitary
3) Let T*T =TT* then T be normal
Next we give some examples.
Examples (3.4.1)

1) Since self —adjoint and unit elements are normal.
2) Any z € Cisnormal ; it is self — adjoint only when z € R it is unitary
when |z| = 1.
3) The operator T*defined by T*x = ax , x € H ,is the adjoint of the
operator T € B(H) suchthat Tx = ax ,x € Hand a € C, Indeed , for
x,y €H,(x,T"y) =(Tx,y) = (ax,y) = (x,ay) .
Thus (x,(T* — al)y) = 0 consequently , T* = al.

4) Let S,T are self —adjoint, thensoare S + T ,aT(a € R) , p(T) for any
real polynomial p and T~ if it exists but ST is self —adjoint iff ST=TS.
Theorem (3.4.1)[13]

If the operator T: H — H is a bounded on H . Then

1) Let T be self —adjoint ,then (Tx, x) Vx € H be real.
2) Let H be complex, (Tx,x) Vx € H isreal, then T is self — adjoint.

Proof

1) Let T be self —adjoint , hence,
(Tx,x) = (x,Tx) = (Tx,x) Vx.

Hence (T'x, x) is real since it equals its complex conjugate.
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2) Let(Tx,x) be real for all x, then

(Tx,x) = (Tx,x) = (x,T*x) = (T"x, x).
Hence

0=(Tx,x) —(T*x,x) =((T —T*)x, x)
and T — T* = 0 since H is complex. Then T = T".
Remark[15].

1) The previous proposition Part (2) is false if it only supposed that it is a real

Hilbert space . The example ; if

_[0 1 2
T = [_1 0] on R+,
then (Tx,x) = 0 Vx € R?.

However , T* = [(1) _01] # [_01 (1)] =T.

2)Let T € B(H),thenT*T and T + T are self —adjoint .
Theorem (3.4.2)[19]

When two bounded self-adjoint linear operators on a Hilbert space are combined
to form S and T, H is only self-adjoint if and only if the operators commute,

resulting in ST = TS.
Proof
If ST is self adjoint , then (ST)* = ST but (ST)* =T*S*=TS.
Now if ST = TS,then
(ST)* =T*S* =TS = ST.
This implies ST is self — adjoint.
Theorem (3.4.3)[13]

If (T;,) is a series of bounded self-adjoint linear operators T,;: H — H on a Hilbert
space H, then the limit operator T is a bounded self-adjoint linear operator on H if
(T;,)converges, such that , T,, — T, so that, ||T,, — T|| — 0, where ||-|| is the norm
on the space B(H, H).
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Proof
By follows ||T — T*|| = 0.
1T, =Tl = (T = )"l = IT, = T
and obtain by the theorem (2.2.1) part (2) in B(H, H)
IT =T < IT — Tull + 1T, — T I+IT," — T
=T - Tull + 0+ I, — Tl
=2|T,-TIl -0 (n— o).
Hence IT—T*||=0and T*=T.
Theorem (3.4.4)[15]

If the operators U: H — H and W: H — H by unitary . Then U, W unitary =
UW ,U™1 unitary .

Unitary elements have unit norm , ||U|| = 1, provided H # {0} .
Proof

If U,, are unitary and U,, — T , then by continuity the involution , U,,” — T* since
U, U, = 1= U,U," become T*T = 1TT* in the limit, that is T~ = T* for any
UW € U(x),UW and U* = (U™1) are also unitary

(UW)* =W*U* = W—lU—l — (Uw)—l
Ut =U= Ut = (U

Finally |UII? = [lu*ull = 11l = 1.

Lemma (3.4.5)[19]

If Hisacomplex Hilbert space, T: H — H be linear operator on H and a

bounded such that (Tw,w) Vw € H , then T=0.
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Proof

For w,y € H,

1
(Tw,y) = Z{<T(W +y)w+y)—(Tw—y),w—y)+T(W+iy),w +iy)
—i(T(w —iy),w —iy)}.

Since (Tw,w) = 0forall w,y € H, it follows that (Tw,y) =0V w,y € H
settingy = Tw,

Thus [|Tw|| = 0 forevery w € H,so Tw = 0 Vx € H. consequently, T=0.
Definition (3.4.2)

T is positive semidefinite, let T € B(H)be such that T* =T if foreach e H ,
(Tx,x) = 0. If T is positive definite and (Tx, x) > 0 for every nonzero x € H.

They are often referred to as strictly positive and positive operators.
Theorem (3.4.6)[7]

If , T € B(H) , when a complex Hilbert space isH , if ST = TS then their product
ST is positive suchthat S > 0,7 > 0.

Proof

suppose ST = TS and we show that (STx,x) > 0 forall x € H . Let S=0, the
inequality holds. If # 0. Set S; = S/IISI| ,S, = S; — S12, .., Spe1 = Sp —
S,2, ..., for each S; be self —adjoint . To prove ,any i = 1,2,.., 0 < S; < I .For
i=1landx €H,

(S1x,x) = ((S/NSIDx, x) = (Sx, x) /SN < NSk /NSI < M= = (x, %) ;
S0, ((I—S)x,x)=0.

suppose that 0 < S, < I.Then (S;.2(I — Si)x, x) = ((I = S;)Skx, Six) =0,
that is ,

S, 2(I — S;,) = 0 . similarly , it can be shown that S, (I — S,)% = 0 . Consequently,
Ski1 =S P =S) + S, (I =S )?=0and I —Spq = (I —Sp) + S22 = 0by

Thus S, = 0 where S}, > 0 . This completes the argument when 0 < S, < I .
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To observe that. Now consider the general case
S =8548, =524+5"+8S==85+85 4+ +5,°+ Sp11.
Since S,41 = 0, this implies
SE+S 45,2 =85—-5,,1<85;.

By the definition of < and S; = S;", that is

n n n
DSl = Y (52, 52) = ) (5%, %)
i=1 i=1 i=1

< (S;x, x).

Since n is arbitrary , the infinite series .72, [|S;x||* converges , which implies
ISix|| — 0

and hence S;x — 0.
Since
n
(Z SiZX,x) =(5; —S4+1)x — S;x  asn — oo,
i=1

Since the sums and products of S; = ||S||"1Sand S and T commute, S; commutes
with T.

(STx, x) = |[S|[{S1Tx, x)

= [ISIKT Syx, x)

n
= ISII(T lim > 5 x,x)
i=1
n
= 3] tim z(TSizx,x)
i=1

n
= |IsI hmE(Tsix, S;x)
n
i=1

>0

)
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Using S = ||S||S; ,and T = 0. Thus, (STx,x) > 0 forall x € H
Definition (3.4.3)

If linear operator T,,: H — H is bounded on a Hilbert spaceH,n = 1,2, ... and
{T,,}.>1 1s a sequence of bounded linear self — adjoint operators defined in a

Hilbert space H,

the sequence {T;, },,-; is called increasing .

[resp . decreasing] if T, < T, < - [resp. Ty =T, = - ].
Theorem (3.4.7) [19]

LetT € B(H) and > 0 . Then, there is a unique V € B(H) withV > 0 and V? =
T .

Furthermore, every bounded operator that commutes with T also commutes with
V.

Proof

Let = 0, then take V = 0.we suppose, [|T|| < 1. for any positive T and z € H,
(Tz,z) < |ITz|lllzll < ITIIzI* = Tz 2),

Which implies
(T/IT|lz,2z) <(z,z),z€H

and therefore , T/||T|| < I . Hence, we may claim that there exists a positive

operator V so that V2 = T/||T]|| .

Conclusion that||T||%V is a positive square root of T .

And I — T is self — adjoint ,

{(I —T)z,z)|
Il =T|l = sup ——————= sup (I —T)z2z)| < 1.
llzll%0 IHA] lzll=1

Since the series
I+a,(I-T)+a,(I-T)*+- ,
converges in norm to an operator V We can be obtainthat V2 =1 - (I -T) =T.
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Furthermore ,since 0 < (I —T) < I, we have
0<{((I-T)"z2z)<1,
forall z € H with ||z|| = 1. Thus,
Vz,z)y=1+Ya,{(I—-T)"z,z)
>1+Y,_;a, ,using a, <0
=0 ,foralln>1

As the value of the series 1 + Y5, a,S™ ats =1 ,whichis 1+ Y _; a, ,is zero,

the sum of the series is also zero.hence ,V >0 .
We do not need the restriction that ||T|| < 1. If S € B(H) issuchthatT =TS .

Then,S(I —T)" = (I —T)™S and consequently , SV = VS . To show that S is

unique.
assume there is V' with V > 0 and ()* = T . Then
vT= (V) =TV ,

T commutes with V, thus V' commutes with T. Also, (V = V)V(V = V) +
Vv-v)Wy-v)=v2-v2)(Vv-v)=o0.

Due to the fact that both terms on the left are positive and equal to zero, their

difference (V — V) = 0.SoV — V' is hence self — adjoint ,
It hence
N 2 N ~ A/

IV =0 = v - -l = || (v =)

And
N 212 N N
v =" = || =) =|v-9)*|| .0 v-V=0.

Example(3.4.2)

In [2[0,1] , the multiplication operator

(Tx)(t) =tx(t) ,0<t<1,x€l?[0,1]
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has the square root S , where
(Sx)(t) =Vtx(t) ,0<t <1, x €1?[0,1].
Theorem (3.4.8)[19]

If T € B(H) is self —adjointand € N, then ||[T™| = ||T||™.

Proof
Let T = 0. So may take ||T||™ > 0 vm € N.
If n = 1 istrival.For = 2, we obtain
IT?1 = IT*TIl = IITII>.

This says that, when k=1 ,the equality ”Tzk” = ||T||2k holds. suppose this for

some k € N. Then,

| T2*+1)| = ||(T2k)2

==Y (W= N = Q) = e

If follows by induction that

||T2"|| = ITI?*  forallk € N.

Now consider an arbitrary n € N. Choose k € Nsuch that < 2% , and put m =
2K —n.Then, 0 < IT™| < ITI™ #0and 0 < |IT™| < |ITII™.

If it were to be the case that ||T™|| < ||T||™ ,then it follow that
k k
72| = e < e < i = e = g,

Contardicting what was proved earlier by induction. Thus, ||T"|| = ||T||™ .
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Conclusion and Recommendation

It has been concluded that the transforming of linear independent sets into
orthogonal sets, and transforming these sets into orthonormal sets in inner product

spaces by using Gram — Schmidt process.

It can be determined the linear combination for the elements of orthonormal

sequences by using Bessel inequality.

Riesz’s theorem shows representing bounded linear functional on Hilbert spaces

by inner product .

The theorem (3.4.3) illustrates that the limit of sequence of bounded self — adjoint

operators on such is self — adjoint bounded linear operator.

As the researcher has recommended on the necessity to continue searching in such
topic in order to get the whole coverage of all sides of Hilbert space, like studying

compacts and the spectrum of Hilbert spaces.
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