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Abstract  

We present studying on Hilbert space and linear operators. 

It has been studied some of the fundamental concepts of inner product spaces. 

Some of these concepts are orthogonal and orthonormal sets that play important 

role in constructing Hilbert spaces. As Hilbert space have been defined and 

supported with some examples upon them. Some fundamental theorems are also 

presented that are in relation to these spaces. Such as Bessel inequality, Gram 

Schmidt process in inner product space. And Riez`s Theorem. 

The researcher has introduced the properties of the linear operators,,linear 

functional ,selif-adjoint linear operators and their influences on Hilbert spaces, 

which are very important in functional analysis.    
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Notations 

𝐵[𝑎, 𝑏]   Space of bounded functions 

𝐵[𝑋, 𝑌]   Space of bounded linear operators 

c            A sequence space  

ℂ            Field of complex numbers  

𝐶𝑛         Unitary 𝑛-space 

𝐶[𝑎, 𝑏]   Space of continuous functions 

𝐷(𝑇)      Domain of an operator 

𝑑(𝑥, 𝑦)   Distance from 𝑥 to 𝑦 

dim 𝑋    Dimension of a space 𝑋  

‖𝑓‖        Norm of bounded linear functional 𝑓 

𝐿𝑝[𝑎, 𝑏]  A function space  

𝑙𝑝           A sequence space of 𝑙𝑝 

𝑙∞          A sequence space of 𝑙∞           

𝐿[𝑋, 𝑌]   A space of linear operators 

𝑁(𝑇)      Null space of an operator 

ℝ             The field of real numbers 

ℝ𝑛           Euclidean 𝑛-space 

𝑠𝑝𝑎𝑛 𝑀    Span of a set 𝑀 

𝑇∗           Hilbert-adjoint operator of 𝑇 

𝑋∗          𝑋 dual space of a vector space  

‖𝑧‖      Norm  𝑧 



  7 
 

〈𝑦, 𝑧〉   Inner product of 𝑦 and 𝑧 

𝑦 ⊥ 𝑧  𝑦 is orthogonal to 𝑧 

𝑋⊥   Orthogonal complement of a closed subspace 𝑋 
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Introduction 

Functional analysis is an abstract branch of mathematical science. It studies 

functions of spaces and involves vector spaces of any dimension[2]. It also studies 

the operators that are defined on the vector spaces [10] . Also it includes study of 

transforms such as Fourier transforms which they how some applications in 

differential and integral equations . In addition, it studies the sequences defined on 

functions  spaces[16]. This study aims to study Hilbert spaces and some of their 

applications. Moreover , it aims to study linear operators ,linear functionals and 

their applications on Hilbert spaces. 

Hilbert spaces due to the German Mathematician David Hilbert(1862 -1943). The 

study of these spaces were introduced in the axioms of Newman`s work [9]. 

Hilbert spaces play an important role in partial differential equations theorems , 

Quantum mechanics ,Fourier transforms and their applications [6]. 

In the first chapter , it has been studied some principle concepts and examples that  

with Hilbert spaces, such as metric spaces, vector spaces, sequences, normed 

spaces, the bounded linear operators and the linear functionals. 

In the second chapter , it has been studied inner product space, Hilbert spaces, 

orthogonal, orthonormal. Some theorems that are related to them. Also some 

properties of the inner product, direct sum and orthogonal complement .  

In the third chapter, it has been studied the linear functionals on Hilbert spaces, the 

sesquilinear functional, Hilbert-Adjoint operator, some examples and theorems 

that are related to them. 
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1 Some Fundamental Concepts  

This chapter aims to introduce some principle concepts, which have great 

importance in studying Hilbert spaces, such as metric spaces  ,normed spaces 

which are defined on vector spaces. So that it is so essential to show vector spaces 

and know their properties geometrically. We will be showed some principle 

definitions.  

1.1 Metric Spaces  

 Metric spaces can be considered as a basic spaces. The ideas of convergence and 

continuity exist. The fundamental ingredient that is needed to make these concepts   

is a distance, also called a metric, which is a measure of how elements close to 

each other [15]. 

Definition (1.1.1) 

A distance (or metric) on a non-empty set X is a function.   

𝑑 ∶ 𝑋 × 𝑋 ⟶  ℝ+ ∪ {0} 

(𝑥, 𝑦) ⟼ 𝑑(𝑥, 𝑦) 

Such that the following  properties (called axioms) hold  for all  𝑥, 𝑦, 𝑧 ∈ 𝑋, 

1) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) , (𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦),  

2) 𝑑(𝑦, 𝑥) = 𝑑(𝑥, 𝑦) , (𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦) 

3) 𝑑(𝑥, 𝑦) ≥ 0  ∀ 𝑥, 𝑦 ∈ 𝑋   𝑎𝑛𝑑  𝑑(𝑥, 𝑦) = 0  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 𝑦, 

The pair (𝑋, 𝑑) is called  Metric Space . 

In stead of (𝑋, 𝑑) we may simply write 𝑋. 

    1.2 Normed Spaces  

   " If we take a vector space and define a metric on it using a norm, we can obtain the 

metric spaces. A normed space is the name given to the resulting area. It is then 

referred to as a Banach space if it is a full metric space. They are the developed of 

functional analysis, and on them are defined Banach spaces of linear operators. 

The fundamental concepts of these theories are presented in this chapter"[13].           
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Vector space plays  role in many branches of mathematics . A vector space is 

Hilbert space (linear space). Additionally, this section includes background 

information on these spaces. [19 ]. 

Definition (1.2.1) 

   If X is a nonempty set of elements x, y, z,... and F is a field of scalars,,..., then x+y 

in X and x in X correspond to a third element, known as the scalar product of and 

x, such that addition and multiplication meet the following criteria.         

      1)    𝑥 + 𝑦 = 𝑦 + 𝑥         ∀ 𝑥, 𝑦 ∈ 𝑋 

2)   𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧       ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 , 

3)   there is a unique element  0in X, called zero element , such that        𝑥 +

0 = 𝑥 ,  ∀𝑥 ∈ 𝑋, 

4)   ∀𝑥 ∈ 𝑋 , there is a unique element (−𝑥) in X such that 𝑥 + (−𝑥) = 0 , 

      𝑎)  𝛼(𝑥 + 𝑦) = 𝛼𝑥 + 𝛼𝑦          ∀ 𝑥, 𝑦 ∈ 𝑋, 𝛼 ∈ 𝐹, 

  𝑏)   (𝛼𝛽)𝑥 = 𝛼(𝛽𝑥)        ∀ 𝑥 ∈ 𝑋, 𝛼, 𝛽 ∈ 𝐹   𝑎𝑛𝑑  

  𝑐)   1𝑥 = 𝑥  ∀ 𝑥 ∈ 𝑋 , where 1 ∈ F is the identity in 𝐹.   

  Then (𝑋, +, . ) Satisfying properties ((1) − (4)) 𝑎𝑛𝑑 ((𝑎) − (𝑐))  referred to as 

a vector space over F. The components of X are known as vectors or points, 

while the components of F are known as scalars. A complex vector space is 

(X,+,.) if F is the field of complex numbers C [resp - real numberR] [14]     

                                                                                              2.2)      Definition(1.                                                                                   

A subspace of a vector space X is a nonempty subset Y of X such that we have 

𝛼𝑦1 + 𝛽𝑦2 ∈ 𝑌 for every  𝑦1, 𝑦2  ∈ 𝑌 and all scalars 𝛼, 𝛽. Y is a vector space in 

and of itself. These two algebraic operations are those that X induces. 

Definition (1.2.3) 

It is argued that a finitely many-vector series {𝑥1, 𝑥2, … , 𝑥𝑛}is linearly independent 

if the relation 
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𝛼1𝑥1 + 𝛼2𝑥2 + ⋯ 𝛼𝑛𝑥𝑛 = 0 

Holds in case when 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑛 = 0 ; otherwise , the of elements 

sequence  𝑥1, 𝑥2, … , 𝑥𝑛 is said to be linear dependent . 

Definition (1.2.4) 

A basis is a collection of linearly independent vectors with the property that each 

vector x∈X can be a linear combination of some subset of B if X is a vector space 

and B is a collection of linearly independent vectors. 

   Definition (1.2.5) 

If there is a positive integer n such that X includes a linearly independent            

collection of n vectors, then the dimension of the vector space X is finite. Any      

collection of n+1 or more X vectors is linearly dependent, and n is referred to as   

the X dimension, denoted by the formula n=dimX.                                                    

X=0 has a finite number of dimensions, and dimX=0                                                     

      Let X have infinite dimensions rather than finite ones.                                         

Definition (1.2.6)  

A vector space with a norm defined on which is called a Normed space (X). A  

complete normed space is a banach space. Here, a vector space norm (real or 

complex) A positive real-valued function on X is called X, and its value at x∈X is 

represented by‖∙‖ ∶    𝑧 ⟶  ℝ+ ∪ {0} 

1) ‖𝑥‖ ≥ 0    ∀ 𝑥 ∈ 𝑋 

2) ‖𝑥‖ = 0   𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓   𝑥 = 0 

3) ‖𝛼𝑥‖ = |𝛼|‖𝑥‖  ∀ 𝑥 ∈ 𝑋, 𝛼 ∈ 𝐹 , (𝐹 = ℝ 𝑜𝑟 ℂ)  

4) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖      (𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦)∀𝑥, 𝑦 ∈ 𝑋 

with the aforementioned traits 

A metric d on X defined by d(x, y)= ‖𝑥 − 𝑦‖, (x ,y ∈X), also known as the metric 

by the norm, is said to be the metric on X.                                                                 

X, ‖∙‖) or just X serves as the definition of the normed spaces.                                ) 
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We will see later in this part that not all of the metrics on a vector space can be 

derived from a norm, as was mentioned in earlier sections where some of the 

metric spaces may be converted into normed spaces [12].                                 

Next we give some examples.  

Examples(1.2.1)  

1)If 𝑋 = ℝ𝑛, and 𝑥 = (𝑥1, … , 𝑥𝑛) , 𝑦 = (𝑦1, … , 𝑦𝑛)  such that 𝑑(𝑥, 𝑦) =

√(𝑥1 − 𝑦1)2 + ⋯ + (𝑥𝑛 − 𝑦𝑛)2 ,then     

‖𝑥‖ = (∑ 𝑥𝑖
2𝑛

𝑖=1 )
1
2  for all 𝑥 ∈ ℝ𝑛 defin norm on ℝ𝑛, hence  (ℝ𝑛, ‖∙‖)is a normed 

space. 

2)If 𝑋 = 𝑙𝑝, such that ∑ |𝑥𝑖|𝑝∞
𝑖=1 < ∞  (𝑝 ≥ 1 ,fixed) , In the space 𝑙𝑝, each 

element is a sequence.𝑋 = (𝑥𝑖) = (𝑥1, 𝑥2, … ) of numbers ,then  

‖𝑥‖ = (∑ ‖𝑥𝑖‖𝑝∞
𝑖=1 )

1
𝑝  for all 𝑥𝑖 ∈ 𝑙𝑝 define a norm on 𝑙𝑝 and given by  

𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = (∑ |𝑥𝑖 − 𝑦𝑖|𝑝
∞

𝑗=1
)

1
𝑝

 

3)If 𝑋 = ℂ𝑛 , then  

‖𝑥‖ = (∑ |𝑥𝑖|2𝑛
𝑖=1 )

1

2  for all   𝑥 ∈ ℂ𝑛  

define norm on ℂ𝑛, that is  (ℂ𝑛, ‖∙‖) is a normed space. 

Definition (1.2.7) 

Suppose X is a metric space. A sequence of points{𝑥𝑛}𝑛∈𝑁 converges to the point 

in X 𝑥 ∈ 𝑋 if  

lim
𝑛⟶∞

𝑑(𝑥𝑛, 𝑥) = 0 . 

That is for every 𝜖 > 0 there must exist  some integer 𝑁 > 0 such that  

 𝑑(𝑥𝑛, 𝑥) ≤ 𝜖 ∀ 𝑛 ≥ 𝑁. 

In this case, we write 𝑥𝑛 ⟶ 𝑥. 
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Examples(1.2.2) 

In any metric space 𝑥𝑛 ⟶ 𝑥 if and only if  𝑑(𝑥𝑛, 𝑥) ⟶ 0 𝑎𝑠 𝑛 ⟶ ∞ (because 

𝑥𝑛 ∈ 𝐵 (𝑥) if and only if  𝑑(𝑥𝑛, 𝑥) < 휀) . for example, 𝑥𝑛 ⟶ 𝑥 when 𝑑(𝑥𝑛, 𝑥) ≤

1

𝑛
 hold . 

Definition (1.2.8) 

If X is a metric space and for every 𝜖 > 0 there exists an integer 𝑁 > 0 .A 

sequence of points{𝑥𝑛}𝑛∈𝑁 in 𝑋 is a Cauchy sequence like that 

 𝑑(𝑥𝑚, 𝑥𝑛) < 휀   ∀ 𝑚, 𝑛 ≥ 𝑁 .         

Definition (1.2.9)  

 A series converges is a sequence of vectors in a normed space  obtained by 

addition , (𝑥1, 𝑥1 + 𝑥2, 𝑥1 + 𝑥2 + 𝑥3, … ) ; the sequence's 𝑁𝑡ℎ term is denoted by  

𝑆𝑛 = ∑ 𝑥𝑛
𝑁
𝑛=1  , 𝑁 ∈ ℕ (The sequence partial sums).  

Therefore, the series ∑ 𝑥𝑛𝑛  is convergent to x if  ‖𝑥 − ∑ 𝑥𝑛
𝑁
𝑛=1 ‖ ⟶ 0 when 

𝑁 ⟶ ∞. 

In this case the limit x is called its sum 

𝑥1 + 𝑥2 + ⋯ = ∑ 𝑥𝑛
∞
𝑛=1 = lim

𝑁→∞
∑ 𝑥𝑛

𝑁
𝑛=1 = 𝑥. 

A series is called the converge absolutely when ∑ ‖𝑥𝑛‖𝑛  converges in ℝ. 

Definition(1.2.10)  

If every Cauchy sequence in a metric space (X,d) converges to a point in X, then 

the space is said to be complete.                                                                

Definition (1.2.11) 

Let there are two metric spaces, (X,d) and (�̀�, �̀�). If 𝑑〈𝑇(𝑦), 𝑇(𝑧)〉 = 𝑑〈𝑦, 𝑧〉 for 

any y ,z ∈X, a mapping T from X to �̀� is an isometry.                                            
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Definition (1.2.12) 

If X a metric space is called the separable if it contains a countable dense sub set 

A ,where A is countable and �̅� = 𝑋 .                                          

Therefore, since subspace Y of a Banach space X is a subspace of X taken into 

account as a normed space, we do not require Y to be complete.                       

Theorem (1.2.1) [13] 

If the space (𝑋, ‖∙‖)is normed. Following that, a dense in �̂� Banach space �̂� and 

an isometry A form X onto a subspace W of �̂� are present. With the exception of 

isomorphism, the space �̂�is unique. 

Proof 

Since a complete metric space �̂� = (�̂�, �̂�) and an isometry 𝐴: 𝑋 ⟶ 𝑊 = 𝐴(𝑋), 

where W is dense in �̂� is unique , except for isometries. We must first turn �̂� into 

a vector space before imposing an appropriate norm on it. We consider any �̂�, �̂� ∈

�̂� in order to define on �̂�  the two algebraic operations of a vector space.  and 

representatives (𝑥𝑛) ∈ �̂� and (𝑦𝑛) ∈ �̂�. Since the equivalence classes of Cauchy 

sequences in X are 𝑥 ̂𝑎𝑛𝑑 �̂�. 𝑧𝑛is set to be equal to 𝑥𝑛 + 𝑦𝑛. Therefore, (𝑧𝑛)is 

Cauchy in X because 

‖𝑧𝑛 − 𝑧𝑚‖ = ‖𝑥𝑛 + 𝑦𝑛 − ( 𝑥𝑚 + 𝑦𝑚)‖ ≤ ‖𝑥𝑛 − 𝑥𝑚‖ + ‖𝑦𝑛 − 𝑦𝑚‖. 

We define the equivalence class for which (𝑧𝑛) is a representative as the sum �̂� =

�̂� + �̂� of �̂� , �̂� ; hence, (𝑧𝑛)∈  �̂�. This concept is not dependent on the Cauchy 

sequences chosen to represent �̂�  and �̂�. since if (𝑥𝑛)~(𝑥�́�) and (𝑦𝑛)~(𝑦�́�), then 

(𝑥𝑛 + 𝑦𝑛)~(𝑥�́� + 𝑦�́�) because 𝛼�́� ∈ �́� which (𝛼𝑥𝑛) 

‖𝑥𝑛 + 𝑦𝑛 − (𝑥�́� + 𝑦�́�)‖ ≤ ‖𝑥𝑛 − 𝑥�́�‖ + ‖𝑦𝑛 − 𝑦�́�‖. 

We have defined the equivalence for which (𝛼𝑥𝑛) is a representative as the 

product 𝛼�́� ∈ �́�of a scalar 𝛼 and �́�. The selection of an �́�  representative has no 

bearing on this definition. The equivalence class containing all Cauchy sequences 

that converge to zero is represented by the zero element of �́�. As a result, �́� is a 

vector space. According to the definition, the vector space operations induced 
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from �́� and those induced from X using A agree on W. A creates a norm ‖∙‖1 on 

W whose value at each of the points �̂� = 𝐴𝑥 ∈ 𝑊 is ‖�̂�‖1 = ‖𝑥‖. Given that A is 

isometric, the restriction of �̂� to W is the equivalent metric on W. By going 

beyond the norm ‖∙‖1to �́� by setting ‖�̂�‖2 = �́�(0́, �́�)for every �́� ∈ �́� . 

1.3 Finite Dimensional Normed Spaces and Subspaces. 

" Due to the significant role that finite dimensional normed spaces and subspaces 

play in Hilbert space. We are unable to find a linear combination that contains 

large scalars but represents a small vector in the case of linear independence of 

vectors"[3] 

Lemma (1.3.1)  [13] 

If a normed space X (of any dimension) contains a collection of linearly 

independent vectors named {𝑥1, 𝑥2, … , 𝑥𝑛}. Then there is an integer c>0 such that  

for each of scalars 𝛼1, 𝛼2, … , 𝛼𝑛we obtain 

‖𝛼1𝑥1 + ⋯ + 𝛼𝑛𝑥𝑛‖ ≥ 𝑐(|𝛼1| + ⋯ + |𝛼𝑛|)  ; ( 𝑐 > 0) ⟶ (1) 

Proof  

We write 𝑠 = |𝛼1| + ⋯ + |𝛼𝑛| .If 𝑠 = 0 ,then all 𝛼𝑗 are zero for all 1 ≤ 𝑗 ≤ 𝑛 , 

Therefore, (1) is true for each c 

Let s>0 . If 𝛽𝑗 = 𝛼𝑗 𝑠⁄ , then (1) is similar to the inequality that we derive from (1) 

by multiplying by s .Thus   

‖𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛‖ ≥ 𝑐          ;   (∑ |𝛽𝑗|𝑛
𝑗=1 = 1)   ⟶ (2)  

  for each n-tuple of scalars 𝛽1, … , 𝛽𝑛 with ∑ |𝛽𝑗|𝑛
𝑗=1 = 1 ,since(2) holds. 

Let's say that is false. Then a sequence (𝑦𝑚) of vectors  

𝑦𝑚 = 𝛽1
(𝑚)

𝑥1 + ⋯ + 𝛽𝑛
(𝑚)

𝑥𝑛     (∑ |𝛽𝑗
(𝑚)

|𝑛
𝑗=1 = 1)exists 

Such that 𝛽1, … , 𝛽𝑛 with ∑ |𝛽𝑗|𝑛
𝑗=1 = 1 

‖𝑦𝑚‖ ⟶ 0  𝑎𝑠 𝑚 ⟶ ∞. 
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 Since ∑|𝛽𝑗
(𝑚)

| = 1 , hence |𝛽𝑗
(𝑚)

| ≤ 1 . So that for any fixed j the sequence  

(𝛽𝑗
(𝑚)

) = (𝛽𝑗
(1)

, 𝛽𝑗
(2)

, … ) 

is bounded . Since (𝛽1
(𝑚)

) has a convergent subsequence. If 𝛽1 denote the limit 

of that subsequence, if (𝑦1, 𝑚) the corresponding  subsequence of (𝑦𝑚) .Also 

 (𝑦1, 𝑚)  has a subsequence (𝑦2, 𝑚)for which the corresponding subsequence of 

scalars 𝛽2
(𝑚)

 converges ; if 𝛽2 denote the limit .Continuing in this way, after n 

steps we obtain a subsequence (𝑦𝑛,𝑚) = (𝑦𝑛,1, 𝑦𝑛,2, … ) 𝑜𝑓 (𝑦𝑚) whose terms are 

of the form  

𝑦𝑛,𝑚 = ∑ 𝑗
(𝑚)𝑛

𝑗=1 𝑥𝑗        ;      (∑ |𝑗
(𝑚)

|𝑛
𝑗=1 = 1)       

with scalars 𝑗
(𝑚)

 satisfying 𝑗
(𝑚)

⟶ 𝛽𝑗 as  𝑚 ⟶ ∞ .So that , as 𝑚 ⟶ ∞, 

   𝑦𝑛,𝑚 ⟶ 𝑦 = ∑ 𝛽𝑗
𝑛
𝑗=1 𝑥𝑗   where ∑|𝛽𝑗| = 1 ,hence not all 𝛽𝑗 can be zero . Since  

{𝑥1, 𝑥2, … , 𝑥𝑛} is a linearly independent set , we have 𝑦 ≠ 0. On the other hand 

, 𝑦𝑛,𝑚 ⟶ 𝑦 implies ‖𝑦𝑛,𝑚‖ ⟶ ‖𝑦‖ . Since ‖𝑦𝑚‖ ⟶ 0  and (𝑦𝑛,𝑚) is a 

subsequence of (𝑦𝑚) , we must have ‖𝑦𝑛,𝑚‖ ⟶ 0 . Hence ‖𝑦‖ = 0 ,thus 𝑦 = 0 .  

This contradicts 𝑦 ≠ 0  . 

Theorem (1.3.2) [20] 

If a normed space X is finite dimensions subspaces Y are all complete. 

Proof  

Let (𝑦𝑚)be a Cauchy sequence in Y, and y will represent the limit. If dim Y= 𝑛 

and any basis for Y, {𝑒1, . . , 𝑒𝑛}. Then 𝑦𝑚has a unique representation of the form. 

𝑦𝑚 = 𝛼1
𝑚𝑒1 + ⋯ + 𝛼𝑛

𝑚𝑒𝑛 

From imposition , any ∈> 0 exist  𝑁 thus                                                       

‖𝑦𝑚 − 𝑦𝑟‖ <∈ when 𝑚, 𝑟 > 𝑁 .By lemma (1.3.1) we have  

∈> ‖𝑦𝑚 − 𝑦𝑟‖ = ‖∑(𝛼𝑗
(𝑚) − 𝛼𝑗

(𝑟))𝑒𝑗

𝑛

𝑗=1

‖ ≥ 𝑐 ∑|𝛼𝑗
(𝑚) − 𝛼𝑗

(𝑟)| 

𝑛

𝑗=1

 



  18 
 

Division by 𝑐 > 0 produces where 𝑚, 𝑟 > 𝑁 we obtian 

 |𝛼𝑗
(𝑚) − 𝛼𝑗

(𝑟)| ≤ ∑|𝛼𝑗
(𝑚) − 𝛼𝑗

(𝑟)| 

𝑛

𝑗=1

<
∈

𝑐
             (𝑚, 𝑟 > 𝑁 ) 

For every of the n sequences  

(𝛼𝑗
(𝑚)) = (𝛼𝑗

(1), 𝛼𝑗
(2), … )    𝑗 = 1, . . . , 𝑛 Is Cauchy in 𝑅 𝑜𝑟 𝐶? In order for it to 

converge, if 𝛼𝑗 denotes the limit. Using these n limits therefore, 𝛼1, … 𝛼𝑛 we 

define 

𝑦 = 𝛼1𝑒1 + ⋯ + 𝛼𝑛en 

hence 𝑦 ∈ 𝑌,  

‖𝑦𝑚 − 𝑦‖ = ‖∑ (𝛼𝑗
(𝑚) − 𝛼𝑗)𝑒𝑗

𝑛
𝑗=1 ‖ ≤ ∑ |𝛼𝑗

(𝑚) − 𝛼𝑗| ‖𝑒𝑗‖𝑛
𝑗=1 . 

On the right , 𝛼𝑗
(𝑚) ⟶ 𝛼𝑗 . Hence ‖𝑦𝑚 − 𝑦‖ ⟶ 0 this is , 𝑦𝑚 ⟶ 𝑦 . This shows 

that (𝑦𝑚) is convergent in Y . Thus Y is complete . 

1.4 Linear Operators 

Let X and Y be finite dimensional vector spaces and X,Y in field 𝐾. If 

𝑇(𝛼1𝑥1 + 𝛼2𝑥2 = 𝛼1𝑇(𝑥1) + 𝛼2𝑇(𝑥2) for all 𝑥1, 𝑥2 ∈ 𝑋 and 𝛼1, 𝛼2 ∈

𝐾,  T is also a linear operator, the mapping 𝑇: 𝑋 → 𝑌 is said to be 

linear.  

If dim(𝑋) = 𝑛 and dim(𝑌) = 𝑚 ,  choose two a basiss  {𝑒1, 𝑒2, … , 𝑒𝑛} 

for 𝑋 and  {𝑓1, 𝑓2, … , 𝑓𝑚} for 𝑌. The following is how a linear operator 

𝑇: 𝑋 → 𝑌 corresponds to a 𝑚 × 𝑛 matrix A of elements of f [19].  

Definition (1.4.1) 

A linear operator T is mapping 𝑇: 𝑋 ⟶ 𝑌 when 𝑋 and 𝑌 are vector spaces defined 

on the same field 𝐾. 

1) Let domain 𝐷(𝑇) of T is a vector space and that 𝑅(𝑇) is a range in the same 

field.  
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2)  ∀ 𝑥, 𝑦 ∈ 𝐷(𝑇) and ∀ 𝛼 ∈ 𝐾 ,  

𝑇(𝑥 + 𝑦) = 𝑇𝑥 + 𝑇𝑦 

𝑇(𝛼𝑥) = α𝑇𝑥. 

Furthermore for the remainder 𝑁(𝑇) is the null space of T. Since 𝑁(𝑇) is the set 

of all 𝑥 ∈ 𝐷(𝑇) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑇𝑥 = 0. 

Next we give some  examples of linear operators. 𝑥 ∈ 𝐷(𝑇) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑇𝑥 = 0  

Examples(1.4.1) 

1) The zero operator spaces. The operator  𝑂: 𝑋 → 𝑌  is defined by  

𝑂(𝑥) = 0  for all 𝑥 ∈ 𝑋 

2) Differentioation. If X is all polynomials on [𝑎, 𝑏] and define a linear operator T 

on X given   

𝑇𝑥(𝑡) = �́�(𝑡)  

for each  𝑥 ∈ 𝑋, when the prime indicates differentiation from t .Such that 

maps 𝑇: 𝑋 ⟶ 𝑋. 

3) Integration space. If define  𝑇: 𝐶[𝑎, 𝑏] ⟶ 𝐶[𝑎, 𝑏]; T is a linear operator 

defined by  

𝑇𝑥(𝑡) = ∫ 𝑥(𝑡)𝑑𝑡  

𝑡

𝑎

          ; 𝑡 ∈ [𝑎, 𝑏] 

4) Matrices. Let a real matrix 𝐴 = [𝑎𝑖𝑗] with m rows and n columns defines an 

operator   𝑇: ℝ𝑛 → ℝ𝑚 by  

𝑦 = 𝐴𝑥 

Due to the standard practice of matrix multiplication, when  𝑥 = (𝑥𝑖) has n 

components and simlary  𝑦 = (𝑦𝑖) has m , both vectors are written as column 

vectors; writing 𝑦 = 𝐴𝑥,thus  
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[

𝑦1

⋮
𝑦𝑚

] = [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

] [

𝑥1

⋮
𝑥𝑛

]                                

Since matrix multiplication is a linear operation, hence 𝑇 is linear  

Thus  the linearity is used is  proofs [6]. 

Theorem (1.4.1) [13] 

If T is a linear operator then If 𝑑𝑖𝑚 𝐷(𝑇) = 𝑛 < ∞ , 𝑇: 𝑋 ⟶ 𝑌 

𝑇: 𝐷(𝑇) ⟶ 𝑅(𝑇) .Then dim 𝑅(𝑇) ≤ 𝑛. 

Proof 

We choose n+1 elements 𝑦1, … , 𝑦𝑛+1  of (𝑇) . 

Then we have  

𝑦1 = 𝑇𝑥1, … , 𝑦𝑛+1 = 𝑇𝑥𝑛+1 

For some  𝑥1, … , 𝑥𝑛+1 in 𝐷(𝑇). Since 𝑑𝑖𝑚𝐷(𝑇) = 𝑛 ,this set   

{𝑥1, … , 𝑥𝑛+1} must be linearly dependent . Hence  

𝛼1𝑥1 + ⋯ + 𝛼𝑛+1𝑥𝑛+1 = 0 

∃ 𝛼1, … , 𝛼𝑛+1,  no every equal 0. 

Because T be linear and 𝑇0 = 0 

𝑇(𝛼1𝑥1 + ⋯ 𝛼𝑛+1𝑥𝑛+1) = 𝛼1𝑦1 + ⋯ + 𝛼𝑛+1𝑦𝑛+1 = 0. 

The fact that the 𝛼𝑗`s are not all zero demonstrates that the set {𝑦1, … , 𝑦𝑛+1}  is 

linearly dependent. Hence R(T)  subsets of n+1 or more components that are no 

linearly independent .Thus 𝑑𝑖𝑚𝑅(𝑇) ≤ 𝑛 . 

Definition (1.4.2) 

Let 𝑇: 𝐷(𝑇) ⟶ 𝑌 be a linear operator is said to be injective or one to one if for 

any𝑥1, 𝑥2 ∈ 𝐷(𝑇) , 𝑥1 ≠ 𝑥2 ⟹ 𝑇𝑥1 ≠ 𝑇𝑥2. 
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There exists the mapping  

𝑇−1: 𝑅(𝑇) ⟶ 𝐷(𝑇) 

𝑦0 ⟼ 𝑥0     (𝑦0 = 𝑇𝑥0). 

Which maps every 𝑦0 ∈ 𝑅(𝑇) , 𝑥0 ∈ 𝐷(𝑇) for which 𝑇𝑥0 = 𝑦0 .The mapping 𝑇−1 

is called the inverse of T.  

We clearly have 𝑇−1𝑇𝑥 = 𝑥  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐷(𝑇) 

Lemma(1.4.2) [13] 

If 𝑇: 𝑋 ⟶ 𝑌 and 𝑆: 𝑌 ⟶ 𝑍 are bijective linear operators , where X, Y, Z, are 

vector spaces. Then the inverse (𝑆𝑇)−1: 𝑍 ⟶ 𝑋 of the product ( the composite ) 

ST exists, and  

(𝑆𝑇)−1 = 𝑇−1𝑆−1 

Proof  

The operator 𝑆𝑇: 𝑋 ⟶ 𝑍  is bijective ,so that (𝑆𝑇)−1 exists. Such that 

ST(𝑆𝑇)−1=𝐼𝑧  

where𝐼𝑧 is ( the identity operator on Z) . 

stratifying  𝑆−1 and using 𝑆−1𝑆 = 𝐼𝑦, 

we have 

𝑆−1𝑆𝑇(𝑆𝑇)−1 = 𝑇(𝑆𝑇)−1 = 𝑆−1𝐼𝑧 = 𝑆−1 

Applying 𝑇−1 and using 𝑇−1𝑇 = 𝐼𝑥 

We obtain that 

𝑇−1𝑇(𝑆𝑇)−1 = (𝑆𝑇)−1 = 𝑇−1𝑆−1 . 
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1.5 Bounded Linear Operators. 

"Between the one-dimensional scalar field beneath the linear space and every 

linear functional, there is a linear operator". [5].   

Definition (1.5.1) 

If  𝑋 and 𝑌 are normed space and 𝑇: 𝐷(𝑇) ⟶ 𝑌be a linear operator , where 

𝐷(𝑇) ⊂ 𝑋 . If real number c exists and  such that for any  𝑥 ∈ 𝐷(𝑇), then T be 

called a bounded. 

‖𝑇‖ = sup
𝑥∈𝐷(𝑇)
‖𝑥‖=1

‖𝑇𝑥‖ 

‖𝑇𝑥‖ ≤ 𝑐‖𝑥‖. 

A bounded linear operator translates bounded sets in 𝐷(𝑇) onto bounded sets in Y, 

as demonstrated by definition (1.5.1). 

Next we give some examples . 

Examples (1.5.1) 

1) Let 𝐼: 𝑋 → 𝑋 is the identity operator on a normed space where 𝑋 ≠ {0} is 

bounded and when ‖𝐼‖ = 1 . 

2) Consider examples(1.4.1) part (4)  

𝑦 = 𝐴𝑥 

Where                              𝑋 = [

𝑥1

⋮
𝑥𝑛

]     𝑎𝑛𝑑  𝑌 = [

𝑦1

⋮
𝑦𝑚

] 

Note that   

𝑌𝑗 = ∑ 𝑎𝑗𝑘𝑥𝑘  
𝑛

𝑘=1
       (𝑗 = 1, … . , 𝑚) 

Since T is linear 

Note that the norm on ℝ𝑛 is given by   
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‖𝑥‖ = (∑ 𝑥𝑖
2

𝑛

𝑖=1
)

1
2
 

Similarly for 𝑦 ∈ ℝ𝑚. 

we thus obtain  

‖𝑇𝑥‖2 = ∑ 𝑦𝑖
2

𝑚

𝑖=1
= ∑ [∑ 𝑎𝑗𝑘𝑥𝑘

𝑛

𝑘=1
]

2𝑚

𝑗−1

 

≤ ∑ [(∑ 𝑎𝑗𝑘
2

𝑛

𝑘=1

)

1
2

(∑ 𝑥𝑘
2

𝑛

𝑘=1

)

1
2

]

2
𝑚

𝑖−1

 

= ‖𝑥‖2 ∑ ∑ 𝑎𝑗𝑘
2

𝑛

𝑘=1

𝑚

𝑗=1
 

Thus 

‖𝑇𝑥‖2 ≤ 𝑐2‖𝑥‖2    𝑤ℎ𝑒𝑟𝑒    𝑐2 = ∑ ∑ 𝑎𝑗𝑘
2

𝑛

𝑘=1

𝑚

𝑗=1

. 

Then  

‖𝑇𝑥‖ ≤ 𝑐‖𝑥‖ 

Implies that T is bounded . 

Theorem (1.5.1) [19] 

Let 𝑇: 𝐷(𝑇) ⟶ 𝑌 be linear operator , where 𝐷(𝑇) ⊂ 𝑋 and X, Y be normed 

spaces. Then 

1) If and only if T is bounded, T is continuous. 

Proof  

1) for = 0 . let ≠ 0 . Then ‖𝑇‖ ≠ 0.suppose T to be bounded , if any 휀 >=  0 by 

provided. Since T is linear, this means that for all 𝑥0, 𝑥 ∈ 𝐷(𝑇) 

like that   
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‖𝑥 − 𝑥0‖ < 𝛿          when       𝛿 =
𝜖

‖𝑇‖
 

Thus  

‖𝑇𝑥 − 𝑇𝑥0‖ = ‖𝑇(𝑥 − 𝑥0)‖ ≤ ‖𝑇‖‖𝑥 − 𝑥0‖ < ‖𝑇‖𝛿 = 𝜖. 

Since 𝑥0 ∈ 𝐷(𝑇), hence T is continuous .  

Conversely , supposing T is continuous at any given 𝑥0 ∈ 𝐷(𝑇). 

Then there is a 𝛿 > 0 given any 휀 > 0 so that 

‖𝑇𝑥 − 𝑇𝑥0‖ ≤ 𝜖     for every 𝑥 ∈ 𝐷(𝑇) satisfying     ‖𝑥 − 𝑥0‖ < 𝛿 . 

Now take any 𝑦 ≠ 0 in 𝐷(𝑇) and set  

𝑥 = 𝑥0 +
𝛿

‖𝑦‖
𝑦 .Then  𝑥 − 𝑥0 =

𝛿

‖𝑦‖
𝑦 . 

Hence ‖𝑥 − 𝑥0‖ = 𝛿. since T is linear , we have  

  ‖𝑇𝑥 − 𝑇𝑥0‖ = ‖𝑇(𝑥 − 𝑥0)‖ = ‖𝑇 (
𝛿

‖𝑦‖
𝑦 )‖ = 

𝛿

‖𝑦‖
‖𝑇𝑦‖  

implies 
𝛿

‖𝑦‖
‖𝑇𝑦‖ ≤ 𝜖. Thus  ‖𝑇𝑦‖ ≤

𝜖

𝛿
‖𝑦‖. 

This can be written ‖𝑇𝑦‖ ≤ 𝑐‖𝑦‖ ,where 𝑐 =
𝜖

𝛿
 and T is bounded . 

1.6 Linear Functionals  

Definition (1.6.1) 

If f is a linear functional, then f is a linear operator with a range in the scalar field 

K of X and a domain in a vector space X, hence  

𝑓: 𝐷(𝑓) ⟶ 𝐾 

When 𝐾 = 𝐶 if X is complex and 𝐾 = 𝑅 if X is real. 
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Definition (1.6.2) 

Let's say that the domain 𝐷(𝑓) lies in the scalar field of the normed 𝑋 and that the 

bounded linear functional 𝑓 is bounded linear operator with rang. In light of this, 

real integer c exists such that for any 𝑦 ∈ 𝐷(𝑓). 

|𝑓(𝑦)| ≤ 𝑐‖𝑦‖ 

 The norm of 𝑓 is  

‖𝑓‖ = 𝑠𝑢𝑝𝑦∈𝐷(𝑓) ;𝑦≠0

|𝑓(𝑦)|

‖𝑦‖
 

or 

‖𝑓‖ = 𝑠𝑢𝑝𝑦∈𝐷(𝑓) ;‖𝑦‖=1 |𝑓(𝑦)| 

This implies  |𝑓(𝑦)| ≤ ‖𝑓‖‖𝑦‖, 

Next we give some examples.  

Examples(1.6.1) 

1)If  𝑋 = 𝐶[𝑎, 𝑏] , then  

𝑓(𝑥) = ∫ 𝑥(𝑡)
𝑏

𝑎

𝑑𝑡        𝑥 ∈ 𝐶[𝑎, 𝑏] 

𝑓 is linear functional. shows that 𝑓 is bounded and has‖𝑓‖ = 𝑏 − 𝑎. In fact, 

writing 𝐽 = [𝑎, 𝑏] and remembering the norm on 𝐶[𝑎, 𝑏], 

We obtain  

|𝑓(𝑥)| = |∫ 𝑥(𝑡) 𝑑𝑡
𝑏

𝑎
| ≤  ∫ 𝑥(𝑡) 𝑑𝑡

𝑏

𝑎
 .                 

Since we have  

𝑀𝑗 = sup{𝑓(𝑥); 𝑥𝑗−1 ≤ 𝑥 ≤ 𝑥𝑗} 

𝑀 = max{𝑥(𝑡); 𝑎 ≤ 𝑡 ≤ 𝑏}  

and since   
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𝑓(𝑥) ≤ |𝑓(𝑥)|,   𝑎 ≤ 𝑥 ≤ 𝑏. 

Thus 

|𝑓(𝑥)| = |∫ 𝑥(𝑡) 𝑑𝑡
𝑏

𝑎

| ≤  ∫ 𝑥(𝑡) 𝑑𝑡
𝑏

𝑎

 

= (𝑏 − 𝑎) max
𝑡∈𝐽

|𝑥(𝑡)| 

                              =(𝑏 − 𝑎)‖𝑥‖. 

By definition (1.6.2) we obtain ‖𝑓‖ ≤ 𝑏 − 𝑎. 

We choose   𝑥 = 𝑥0 = 1 , 

note that ‖𝑥0‖ = 1  

‖𝑓‖ ≥
|𝑓(𝑥0)|

‖𝑥0‖
= |𝑓(𝑥0)| = ∫ 𝑑𝑡

𝑏

𝑎

= 𝑏 − 𝑎 . 

This implies   

‖𝑓‖ = 𝑏 − 𝑎. 

Thus, 𝑓  be bounded linear functional . 

Definition (1.6.3) 

A collection of each and every linear functional defined on the vector space X. 

The definition of the vector space's under algebraic operations is as follows. 

a) 𝑇ℎ𝑒 𝑠𝑢𝑚 𝑓1 + 𝑓2 of two functionals 𝑓1  and 𝑓2 is the functional whose 

value at every 𝑥 ∈ 𝑋 is  

𝑠(𝑥) = (𝑓1 + 𝑓2)(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥). 

b) The functional 𝑃 is the product 𝛼𝑓 of a scalar 𝛼 and a functional 𝑓,                                       

and its value at 𝑥 ∈ 𝑋 be  

𝑃(𝑥) = (𝛼𝑓)(𝑥) = 𝛼𝑓(𝑥). 

Thus 𝑋∗ is said to the algeberaic dual space of X 
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Definition (1.6.4) 

The algebraic dual  (𝑋∗)∗ of  𝑋∗whose members are the linear functionals defined 

on  𝑋∗ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑋∗∗ is referred to as the second algeberaic dual space of X if a 

collection of all linear functionals defined on a vector space X. 

Definition (1.6.5)  

if the space 𝑋 is normed. The norm of the normed space formed by the set of all 

bounded linear functionals on 𝑋 is defined as          

‖𝑓‖ = sup
𝑥∈𝑋
𝑥≠0

|𝑓(𝑥)|

‖𝑥‖
= sup

𝑥∈𝑋
‖𝑥‖=1

|𝑓(𝑥)| 

Since �̀� is said to be the dual space of X . We have �̀� is 𝐵(𝑋, 𝑌) with the complete 

space 𝑌 = ℝ or ℂ because a linear functional on 𝑋 maps 𝑋 into ℝ or ℂ (the scalar 

field of X) and sine R or C, taken with a metric, is complete. 
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  HILBERT SPACE 

A Hilbert space is  made up of a vector space and an inner product that gives it the 

structure of an entire metric space.  

The reader is already familiar with the intermingling of  algebra and geometry, 

namely in the vector space ℝ𝑛 , elements in ℝ𝑛 [21]. 

Typically, points have coordinates and vectors can be added and scaled .Moreover 

, in the presence of the standard inner product, since X is normed space ; given by  

〈𝑥, 𝑦〉 = ∑ 𝑥𝑘𝑦𝑘 

𝑛

𝑘=1

; 𝑥, 𝑦 ∈ 𝑋 

the length of a vector  provided by the norm  

‖𝑦‖ = √〈𝑦, 𝑦〉 

 and angle between vectors can be computed by  

𝜃 = 𝑎𝑟𝑐 cos
⟨𝑥,𝑦⟩

‖𝑥‖‖𝑦‖
 . 

and the condition  for orthogonality 𝑎. 𝑏 = 0 

which are important tools in many applications [4]. 

2.1 Inner Product Spaces .  

Definition (2.1.1) 

A vector space X with an inner product defined on X is known as an inner product 

space (or pre Hilbert space). 

An inner product on 𝑋 in this context is a mapping of 𝑋 × 𝑋 into the scalar field 𝐾 

of X. For each pair of vectors x and y, denoted as 〈𝑧, 𝑤〉and is said to the Inner 

product of z and w, such that for all vectors 𝑧, 𝑤, and 𝑣 and scalars 𝛼, we have 

1) 〈𝑧 + 𝑤, 𝑣〉 = 〈𝑧, 𝑣〉 + 〈𝑤, 𝑣〉 

2) 〈𝛼𝑧, 𝑤〉 = 𝛼〈𝑧, 𝑤〉 𝑎𝑛𝑑 〈𝑧, 𝛽𝑤〉 = �̅�〈𝑧, 𝑤〉 

3)  〈𝑧, 𝑤〉 = 〈𝑧, 𝑤〉 

4)  〈𝑧, 𝑧〉 ≥ 0 𝑎𝑛𝑑 〈𝑧, 𝑧〉 = 0 ⟺  𝑧 = 0. 
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A metric on X defined by the expression 

𝑑(𝑧, 𝑤) = ‖𝑧 − 𝑤‖ = √〈𝑧 − 𝑤, 𝑧 − 𝑤〉 

is called an inner product on X. 

The conjugation of the bar complex is in (3). Let X be a real vector space, then   

〈𝑧, 𝑤〉 = 〈𝑤, 𝑧〉 

The part (2) denotes  

〈𝑧, 𝛼𝑤〉 = 𝛼〈𝑤, 𝑧〉 

Definition (2.1.2) 

A complete inner product space is a Hilbert space. 

Easy consequences 

1) ‖𝑥 + 𝑦‖2 = ‖𝑥‖2 + 2𝑅𝑒〈𝑥, 𝑦〉 + ‖𝑦‖2. 

Proof 

‖𝑥 + 𝑦‖2 = 〈𝑥 + 𝑦, 𝑥 + 𝑦〉 = 〈𝑥, 𝑥〉 + 〈𝑥, 𝑦〉 + 〈𝑦, 𝑥〉 + 〈𝑦, 𝑦〉 

     = ‖𝑥‖2 + 2𝑅𝑒〈𝑥, 𝑦〉 + ‖𝑦‖2                                           

2) (pythogoras) If 〈𝑦, 𝑧〉 = 0, then ‖𝑦 + 𝑧‖2 = ‖𝑦‖2 + ‖𝑧‖2. 

  Proof  

Since  ‖𝑦 + 𝑧‖2 = ‖𝑦‖2 + 2𝑅𝑒〈𝑦, 𝑧〉 + ‖𝑧‖2    by (1) then  

We have  〈𝑦, 𝑧〉 = 0 , thus     ‖𝑦 + 𝑧‖2 = ‖𝑦‖2 + ‖𝑧‖2.                                                                                                                    

More generally if 〈𝑦𝑖, 𝑦𝑗〉 = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗, then ‖𝑦1 + ⋯ + 𝑦𝑁‖2 = ‖𝑦1‖2 +

⋯ + ‖𝑦𝑁‖2.  

Definition (2.1.3)     

When 〈𝑥, 𝑦〉 = 0, it is said that an element 𝑥 of an inner product space 𝑋 is 

orthogonal to an element  y∈ 𝑋   . And say that x and y are orthogonal, write 𝑥 ⊥

𝑦. Also for subsets 𝐴, 𝐵 ⊂ 𝑋 we write 𝑥 ⊥ 𝐴  𝑖𝑓 𝑥 ⊥ 𝑎   and 𝐴 ⊥ 𝐵 𝑖𝑓 𝑎 ⊥ 𝑏 for all 

𝑎 ∈ 𝐴 and all 𝑏 ∈ 𝐵.  
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Do all norms on vector spaces come from inner products , and if not , which 

property characterizes inner product spaces ? 

We obtain answer  by parallelogram law [19]. 

 

  

 

 

Theorem (2.1.1) [15] 

For each vector x, y, the inner product induces a norm if and only if  

‖𝑥 + 𝑦‖2 + ‖𝑥 − 𝑦‖2 = 2(‖𝑥‖2 + ‖𝑦‖2) 

Proof 

The parallelogram law follows from adding the identities , 

‖𝑥 + 𝑦‖2 = ‖𝑥‖2 + 2𝑅𝑒〈𝑥, 𝑦〉 + ‖𝑦‖2 , 

‖𝑥 − 𝑦‖2 = 〈𝑥 − 𝑦, 𝑥 − 𝑦〉 = 〈𝑥, 𝑥〉 + 〈𝑥, −𝑦〉 + 〈−𝑦, 𝑥〉 + 〈𝑦, 𝑦〉               

= ‖𝑥‖2 − 2𝑅𝑒 〈𝑥, 𝑦〉 + ‖𝑦‖2. 

Subtracting the two gives 4𝑅𝑒 〈𝑥, 𝑦〉 . This is sufficient to identify the inner 

product when the scalar field is ℝ . 𝑂𝑣𝑒𝑟 ℂ  notice that  𝐼𝑚 〈𝑥, 𝑦〉 = −𝑅𝑒 𝑖〈𝑥, 𝑦〉 =

𝑅𝑒 〈𝑖𝑥, 𝑦〉 , 𝑠𝑜 

〈𝑥, 𝑦〉 =
1

4
(‖𝑦 + 𝑥‖2 − ‖𝑦 − 𝑥‖2 + 𝑖‖𝑦 + 𝑖𝑥‖2 − 𝑖‖𝑦 − 𝑖𝑥‖2). 

Define for any normed space ,    

〈〈𝑥, 𝑦〉〉: =
1

4
(‖𝑦 + 𝑥‖2 − ‖𝑦 − 𝑥‖2), 

for a complex space ,  〈𝑥, 𝑦〉 ≔  〈〈𝑥, 𝑦〉〉 + 𝑖〈〈𝑖𝑥, 𝑦〉〉.  

So that  〈〈𝑦, 𝑥〉〉 = 〈〈𝑥, 𝑦〉〉 and 〈𝑥, 𝑥〉 = 〈〈𝑥, 𝑥〉〉 = ‖𝑥‖2 , as well as 〈𝑥, 0〉 =

〈〈𝑥, 0〉〉 = 0 ;  〈𝑦, 𝑥〉 = 〈𝑥, 𝑦〉̅̅ ̅̅ ̅̅ ̅  is readily verified by  

𝑥 

Fig .1. Parallelogram with sides 𝑥 and 𝑦 in the plane 
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4〈〈𝑖𝑦, 𝑥〉〉 = ‖𝑥 + 𝑖𝑦‖2 − ‖𝑥 − 𝑖𝑦‖2 = ‖𝑦 − 𝑖𝑥‖2 − ‖𝑦 + 𝑖𝑥‖2 = −4〈〈𝑖𝑥, 𝑦〉〉 . 

If the parallelogram law is satisfied is the hardest part of the proof then Showing 

that linearity holds. Writing  

2𝑦 ± 𝑥 = (𝑦 + 𝑧 ± 𝑥) + (𝑦 − 𝑧), 

2𝑧 ± 𝑥 = (𝑦 + 𝑧 ± 𝑥) − (𝑦 − 𝑧), 

and using the parallelogram law ,  

4〈〈𝑥, 2𝑦〉〉 + 4〈〈𝑥, 2𝑧〉〉 = ‖2𝑦 + 𝑥‖2 − ‖2𝑦 − 𝑥‖2 + ‖2𝑧 + 𝑥‖2 − ‖2𝑧 − 𝑥‖2 

=‖2𝑦 + 𝑥‖2 + ‖2𝑧 + 𝑥‖2 − ‖2𝑦 − 𝑥‖2 − ‖2𝑧 − 𝑥‖2 

= 2‖𝑦 + 𝑧 + 𝑥‖2 + 2‖𝑦 − 𝑧‖2 − 2‖𝑦 + 𝑧 − 𝑥‖2 − 2‖𝑦 − 𝑧‖2 

=8〈〈𝑥, 𝑦 + 𝑧〉〉 . 

Putting  z=0 gives 〈〈𝑥, 2𝑦〉〉 = 2〈〈𝑥, 𝑦〉〉 , reducing the above identity to  

〈〈𝑥, 𝑦 + 𝑧〉〉 = 〈〈𝑥, 𝑦〉〉 + 〈〈𝑥, 𝑧〉〉  

Thus  〈〈𝑥, 𝑛𝑦〉〉 = 𝑛〈〈𝑥, 𝑦〉〉  for n ∈ ℕ . For the negative integers,  

〈〈𝑥, −𝑦〉〉 = ‖−𝑦 + 𝑥‖2 − ‖−𝑦 − 𝑥‖2 = −〈〈𝑥, 𝑦〉〉 

while for rational numbers  𝑃 = 𝑚 𝑛⁄  , 𝑚, 𝑛 ∈  ℤ , 𝑛 ≠ 0, 

𝑛 〈〈𝑥, 𝑚

𝑛
𝑦〉〉 = 〈〈𝑥, 𝑚𝑦〉〉 = 𝑚〈〈𝑥, 𝑦〉〉  

 

so   

〈〈𝑥, 𝑝𝑦〉〉 = 𝑝〈〈𝑥, 𝑦〉〉. 

Note that 〈〈𝑥, 𝑦〉〉 is continuous in x and y since the norm is continuous , so if the 

rational numbers  𝑃𝑛 ⟶ 𝛼 ∈ ℝ , then  

〈〈𝑥, 𝛼𝑦〉〉 = lim
𝑛→∞

〈〈𝑥, 𝑃𝑛𝑦〉〉 = lim
𝑛→∞

𝑃𝑛〈〈𝑥, 𝑦〉〉 = 𝛼〈〈𝑥, 𝑦〉〉.  
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Now over the complex numbers , 〈𝑥, 𝛽𝑦〉 = 𝛽〈𝑥, 𝑦〉  𝑓𝑜𝑟 𝛽 ∈ ℂ  , and 〈𝑥, 𝑖𝑦〉 =

−〈〈𝑖𝑥, 𝑦〉〉 + 𝑖〈〈𝑥, 𝑦〉〉 = 𝑖〈𝑥, 𝑦〉 . 

Hence,  A norm cannot be generated from an inner product if it does not meet the 

parallelogram equality condition. Can be write   

Not all normed space are inner product space . 

Note that example (3). 

We have already seen that the inner product space ℝ with 〈𝑥, 𝑦〉 = 𝑥𝑦 and hence 

‖𝑥‖ = |𝑥| is a (one dimensional) Hilbert space – that is to say, every Cauchy 

sequence of real numbers is convergent.  

It is easily seen that a sequence of complex numbers, (𝑎𝑛 + 𝑖𝑏𝑛), is a Cauchy 

[convergent] sequence if and only if both the sequence of real parts ,(𝑎𝑛), and the 

sequence of imaginary parts, (𝑏𝑛), are Cauchy [convergent] sequences. Thus, ℂ 

since 〈𝑥, 𝑦〉 = 𝑥�̅� and hence ‖𝑥‖ = |𝑥| is a Hilbert space[17 ] 

Examples (2.1.1) 

1)ℝ𝑛 , ℂ𝑛 are all Hilbert space. 

 ℂ𝑛 and ℝ𝑛  taken to be the standard inner product, 〈𝑥, 𝑦〉 = ∑ 𝑥𝑖𝑦�̅�
𝑛
𝑖=1  are both 

complete. To see this (for ℂ𝑛,the proof for ℝ𝑛is essentially the same ),let (𝑥𝑚)𝑚=1
∞  

be a Cauchy sequence in ℂ𝑛,so each 𝑥𝑚is an n-tuple of complex numbers ; 𝑥𝑚 =

(𝑥𝑚1, 𝑥𝑚2, … , 𝑥𝑚𝑛). 

We need to show that (𝑥𝑚)is convergent. Now, for each 𝑘 ∈ ℕ we have, 

|𝑥𝑚𝑘 − 𝑥𝑝𝑘| = √|𝑥𝑚𝑘 − 𝑥𝑝𝑘|
2

≤ √∑|𝑥𝑚𝑖 − 𝑥𝑝𝑖|
2

𝑛

𝑖=1

                                     

= ‖𝑥𝑚 − 𝑥𝑝‖ ⟶ 0, as 𝑚, 𝑝 ⟶ ∞,                                  

Since (𝑥𝑚) is a Cauchy . This shows that for each 𝑘 ∈ {1,2, … , 𝑛} the sequence  of  

𝑘`th components, (𝑥𝑚𝑘)𝑚=1
∞ ,is a Cauchy sequence of complex numbers and hence 

(by the completeness of ℂ ) convergent.  
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Let 𝑥𝑘 = lim
𝑚

𝑥𝑚𝑘 . 

We have  

                             𝑋1 = (𝑥11, 𝑥12, 𝑥13, … , 𝑥1𝑛) 

    𝑋2 = (𝑥21, 𝑥22, 𝑥23, … , 𝑥2𝑛)                                             

  𝑋3 = (𝑥31, 𝑥32, 𝑥33, … , 𝑥3𝑛)                                          

      ⋮           ⋮       ⋮        ⋮         ⋮                                                 

         𝑋𝑚 = (𝑥𝑚1, 𝑥𝑚2, 𝑥𝑚3, … , 𝑥𝑚𝑛)                                             

 ⋮             ↓      ↓       ↓    , … , ↓                                        

     ⋮              𝑥1  𝑥2     𝑥3, … , 𝑥𝑚                                          

Now ,let 𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛). Finally, we show that 𝑋𝑚 ⟶ 𝑥. To this end ,note 

that  

lim
𝑚

‖𝑋𝑚 − 𝑥‖ = lim
𝑚

√∑ |𝑥𝑚𝑘 − 𝑥𝑘|2𝑛
𝑘=1        

                               = √∑ (lim
𝑚

|𝑥𝑚𝑘 − 𝑥𝑘|)
2

𝑛
𝑘=1  , 

Since lim
𝑚

|𝑥𝑚𝑘 − 𝑥𝑘| = 0 ,for 𝑘 = 1,2, … , 𝑛.Thus, (𝑋𝑚) is convergent (to 𝑥), as 

required. 

2) Space 𝑙2are Hilbert space, Hilbert sequence space 𝑙2(1912) (Integral Equations) 

     𝑙2, the space of square summable complex (or real) sequences with the inner 

product 〈𝑥, 𝑦〉 = ∑ 𝑥𝑖𝑦�̅�
∞
𝑖=1  , is complete. In many ways, we can regard 𝑙2 as the 

Hilbert space. The proof  similar to that for ℂ𝑛 given above. 

Let (𝑥𝑛) be a Cauchy sequence in   𝑙2 , where 𝑥𝑛 = (𝑥𝑛
1, 𝑥𝑛

2, … , 𝑥𝑛
3, … ); that is , 

for each 𝑛 ∈ ℕ we have ∑ |𝑥𝑛
𝑘|2∞

𝑘=1 ≤ ∞ and ‖𝑥𝑛 − 𝑥𝑚‖ ⟶ 0 as 𝑛, 𝑚 ⟶ ∞. 

Then ,as above, for each 𝑘, 

‖𝑥𝑛
𝑘 − 𝑥𝑚

𝑘‖ = √∑ |𝑥𝑛
𝑖 − 𝑥𝑚

𝑖|2∞
𝑖=1   
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                     = ‖𝑥𝑛 − 𝑥𝑚‖ ⟶ 0 

as (𝑥𝑛) is Cauchy so for each 𝑘, (𝑥𝑛)𝑘  is a Cauchy sequence of (real or complex) 

numbers and hence convergent, to say 𝑥𝑘.  

Let 𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 , … ). To complete the proof we show that 𝑥 ∈ 𝑙2 and 

that (𝑥𝑛) converges to 𝑥. Firstly, consider the partial sum ∑ |𝑥𝑘|2𝑚
𝑘=1  for each 𝑚 ∈

ℕ. Being a sum of non-negative terms, this sum is increasing, so the partial sums 

will converge if they are bounded from above. Now, 

∑ |𝑥𝑘|2𝑚
𝑘=1 = ∑ |lim

𝑛
𝑥𝑛

𝑘|
2

𝑚
𝑘=1 = lim

𝑛
∑ |𝑥𝑛

𝑘|2𝑚
𝑘=1 , 

≤ lim
𝑛

∑ |𝑥𝑛
𝑘|2∞

𝑘=1 = lim
𝑛

‖𝑥𝑛‖. 

That this last limit exist and is finite (and hence provides an upper bound for the 

partial sums) follows from the observation that (‖𝑥𝑛‖) is real Cauchy sequence , 

since (𝑥𝑛)is Cauchy (|‖𝑥𝑛‖ − ‖𝑥𝑚‖| ≤ ‖𝑥𝑛 − 𝑥𝑚‖ ⟶ 0) and so convergent. 

Finally, we establish the convergence of (𝑥𝑛)in 𝑙2 by showing that 𝑥𝑛 ⟶ 𝑥.    

Now, for any 𝜖 > 0, since (𝑥𝑛) is Cauchy, there exists an 𝑛0 ∈ ℕ such that 

‖𝑥𝑛 − 𝑥𝑚‖ < 𝜖 whenever 𝑚, 𝑛 ≥ 𝑛0. Thus, for each 𝑞 ∈ ℕ,we observe that  

√∑ |𝑥𝑛
𝑘 − 𝑥𝑚

𝑘|2𝑞
𝑘=1 ≤ √∑ |𝑥𝑛

𝑘 − 𝑥𝑚
𝑘|2∞

𝑘=1                      

                                            = ‖𝑥𝑛 − 𝑥𝑚‖ < 𝜖, proved 𝑚, 𝑛 ≥ 𝑛0. 

But then, for 𝑛 ≥ 𝑛0 we have,  

‖𝑥𝑛 − 𝑥‖ = lim
𝑞

√∑|𝑥𝑛
𝑘 − 𝑥𝑘|2

𝑞

𝑘=1

 

= lim
𝑞

√∑ |𝑥𝑛
𝑘 − (lim

𝑚
𝑥𝑚

𝑘)|
2

𝑞

𝑘=1
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= lim
𝑞

lim
𝑚

√∑|𝑥𝑛
𝑘 − 𝑥𝑚

𝑘|2

𝑞

𝑘=1

 

≤ 𝜖,    

Showing that 𝑥𝑛 ⟶ 𝑥.  

3) Space 𝑙𝑝. Is not a Hilbert space because with 𝑃 ≠ 2 is not an inner product 

space. 

We demonstrate that the norm does not satisfy theorem (2.1.1).  

Let     

𝑥 = {𝑥𝑛}𝑛=1
∞     𝑎𝑛𝑑  𝑦 = {𝑦𝑛}𝑛=1

∞  

〈𝑥, 𝑦〉 = ∑ 𝑥𝑖�̅�𝑖

∞

𝑖=1

. 

Define inner product space on 𝑙𝑝 such that  

‖𝑥‖ = (∑‖𝑥𝑖‖
𝑝

∞

𝑖=1

)

1
𝑝

 

Let us take  𝑥 = {1,0,0,0, … } ∈ 𝑙𝑝  𝑎𝑛𝑑  𝑦 = {1, −1, 0,0,0, … } ∈ 𝑙𝑝and cakulate 

‖𝑥‖ = ‖𝑦‖ = 2
1
𝑝  , 𝑏𝑢𝑡  ‖𝑥 + 𝑦‖ = ‖𝑥 − 𝑦‖ = 2 

We now see that parallelogram equality is not satisfied if 𝑃 ≠ 2. 𝑇ℎ𝑒𝑛 𝑙𝑝 𝑖𝑠  

complete . 

4) Space 𝐶[𝑎, 𝑏] .The space 𝐶[𝑎, 𝑏] be not an inner product space so that not a 

Hilbert space .  

Suppose that  

‖𝑦‖ = max
𝑡∈𝐽

|𝑦(𝑡)|                𝐽 = [𝑎, 𝑏] 
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This equality , Cannot be obtained from  an inner product because does not satisfy 

the parallelogram law .If  we adopt   

𝑦(𝑡) = 1  𝑎𝑛𝑑  𝑧(𝑡) = (𝑡 − 𝑎) (𝑏 − 𝑎)⁄ , 

we have  

‖𝑦‖ = 1 , ‖𝑧‖ = 1    𝑎𝑛𝑑  

𝑦(𝑡) + 𝑧(𝑡) = 1 +
𝑡 − 𝑎

𝑏 − 𝑎
 

𝑦(𝑡) − 𝑧(𝑡) = 1 −
𝑡 − 𝑎

𝑏 − 𝑎
 . 

Hence ‖𝑦 + 𝑧‖ = 2 , ‖𝑦 − 𝑧‖ = 1  𝑎𝑛𝑑     

‖𝑦 + 𝑧‖2 + ‖𝑦 − 𝑧‖2 = 5    𝑏𝑢𝑡     2(‖𝑦‖2 + ‖𝑧‖2) = 4. 

5)For an inner product space over ℂ . if 〈𝑦, 𝑇𝑦〉 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑦 ∈ 𝑋 , 𝑡ℎ𝑒𝑛 𝑇 = 0. 

The identities  

 0 = 〈𝑦 + 𝑧, 𝑇(𝑦 + 𝑧)〉 = 〈𝑦, 𝑇𝑧〉 + 〈𝑧, 𝑇𝑦〉, 

0 =  〈𝑦 + 𝑖𝑧, 𝑇(𝑦 + 𝑖𝑧)〉 = 𝑖〈𝑦, 𝑇𝑧〉 − 𝑖〈𝑧, 𝑇𝑦〉, 

Together empty 〈𝑦, 𝑇𝑧〉 = 0 for any 𝑦, 𝑧 ∈ 𝑋 inparticular ‖𝑇𝑧‖2 = 0. 

2.2 Some Properties of Inner Product Spaces 

In this section we will show some definition and theorems . 

Theorem (2.2.1) [13] 

Let X is an inner product , then  

1)   |〈𝑧, 𝑤〉| ≤ ‖𝑧‖‖𝑤‖             (𝑠𝑐ℎ𝑤𝑎𝑟𝑧 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦) 

 When and only when {𝑧, 𝑤}is a set that is linearly dependent, the equality sign is 

present 

2) That norm satisfies  
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‖𝑧 + 𝑤‖ ≤ ‖𝑧‖ + ‖𝑤‖                 (𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦) 

Proof 

1) If 𝑤 = 0 , then schwarz inquality holds since 〈𝑧, 0〉 = 0.  

If  𝑤 ≠ 0. To any scalar 𝛼 such that 

0 ≤ ‖𝑧 − 𝛼𝑤‖2 = 〈𝑧 − 𝛼𝑤 , 𝑧 − 𝛼𝑤〉 

                                          = 〈𝑧, 𝑧〉 − �̅�〈𝑧, 𝑤〉 − 𝛼[〈𝑤, 𝑧〉 − �̅�〈𝑤, 𝑤〉]. 

since [〈𝑤, 𝑧〉 − �̅�〈𝑤, 𝑤〉] = 0 , if  choose �̅� = 〈𝑤, 𝑧〉 〈𝑤, 𝑤〉⁄ . 

The remaining inequality is  

0 ≤ 〈𝑧, 𝑧〉 −
〈𝑤, 𝑧〉

〈𝑤, 𝑤〉
〈𝑧, 𝑤〉 = ‖𝑧‖2 −

|〈𝑧, 𝑤〉|2

‖𝑤‖2
 ; 

here we used 〈𝑤, 𝑧〉 = 〈𝑧, 𝑤〉̅̅ ̅̅ ̅̅ ̅ . Multiplying by ‖𝑤‖2 , taking square roots, we 

obtain(1).  

                                           𝑤 = 0 𝑜𝑟  0 = ‖𝑧 − 𝛼𝑤‖2,   

thus 𝑧 − 𝛼𝑤 = 0, 𝑠𝑜 𝑡ℎ𝑎𝑡  𝑧 = 𝛼𝑤,  which shows linear dependence . 

2) Where 𝑤 = 0 𝑜𝑟 𝑧 = 𝑐𝑤  (𝑐 𝑟𝑒𝑎𝑙  𝑎𝑛𝑑  ≥ 0)  are the only conditions 

under which the equality sign is true. 

 we have   

‖𝑧 + 𝑤‖2 = 〈𝑧 + 𝑤 , 𝑧 + 𝑤〉 = ‖𝑧‖2 + 〈𝑧, 𝑤〉 + 〈𝑤, 𝑧〉 + ‖𝑤‖2. 

By part (1) in theorem , 

And from the triangle inequality  we get on  

‖𝑧 + 𝑤‖2 ≤ ‖𝑧‖2 + 2|〈𝑧, 𝑤〉| + ‖𝑤‖2 

                  ≤ ‖𝑧‖2 + 2‖𝑧‖‖𝑤‖ + ‖𝑤‖2 

= (‖𝑧‖ + ‖𝑤‖)2. 

we obtain (2).  
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In this derivation equality holds iff   

〈𝑧, 𝑤〉 + 〈𝑤, 𝑧〉 = 2‖𝑧‖‖𝑤‖. 

From part (1) and 2𝑅𝑒〈𝑧, 𝑤〉 is written on the left side, when 𝑅𝑒 stands for the real 

part. 

𝑅𝑒〈𝑧, 𝑤〉 = ‖𝑧‖‖𝑤‖ ≥ |〈𝑧, 𝑤〉|  ⟶ (3) 

 Because the real component of a complex number cannot be more than its 

absolute value, we have equality, which implies dependence by part (1) 

so, 𝑤 = 0 𝑜𝑟  𝑧 = 𝑐𝑤. 

Demonstrate that 𝑐 ≥ 0 and be real. 

  From (3) and the equality sign 

we obtain  

𝑅𝑒〈𝑧, 𝑤〉 = |〈𝑧, 𝑤〉|.  

However, the imaginary portion of a complex number must be 0 if the real part of 

the number equals its absolute value. 

hence  〈𝑧, 𝑤〉 = 𝑅𝑒〈𝑧, 𝑤〉 ≥ 0 by, (3) and  𝑐 ≥ 0 

Thus 

0 ≤ 〈𝑧, 𝑤〉 = 〈𝑐𝑤, 𝑤〉 = 𝑐‖𝑤‖2. 

The Schwarz inequality can be used in proofs follwoing. 

Corollary(2.2.2) [20] 

Let an inner product space is X and ‖∙‖𝑖𝑠 the induced norm , then  

‖𝑧‖ = sup
‖𝑦‖≤1

|〈𝑧, 𝑦〉| = sup
‖𝑦‖=1

|〈𝑧, 𝑦〉| 

For all 𝑧 ∈ 𝑋. 

 



  40 
 

Proof 

If 𝑧 = 0 the assertion is obvious , so suppose that 𝑧 ≠ 0. If ‖𝑦‖ ≤ 1 , then 

     |〈𝑧, 𝑦〉| ≤ ‖𝑧‖‖𝑦‖ = ‖𝑧‖, from theorem (2.2.1) part (1). Hence  

‖𝑧‖ ≤ sup
‖𝑦‖≤1

|〈𝑧, 𝑦〉|. 

Choosing  𝑦 = 𝑧 ‖𝑧‖⁄  we have |〈𝑧, 𝑦〉| = ‖𝑧‖2 ‖𝑧‖ ≤⁄ ‖𝑧‖,So equality hold in the 

above inequality. Since the supremum over ‖𝑦‖ = 1  is larger or equal to that over 

‖𝑦‖ ≤ 1 ,the assertion of the corollary follows . 

Theorem(2.2.3) [11] 

The norm in an inner product space is strictly (‖𝑤‖ > 0 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑤 ≠ 0) ,   

Positively homogeneous (‖𝛼𝑤‖ = |𝛼|‖𝑤‖),  subadditive (‖𝑤 + 𝑧‖ ≤ ‖𝑤‖ +

‖𝑧‖). 

Proof 

The strict positiveness  of the norm is merely a restatement of strict positiveness of 

the inner product . 

The positive homogeneity of the norm is a consequence of the identity  

‖𝛼𝑤‖2 = 〈𝛼𝑤, 𝛼𝑤〉 = 𝛼𝛼∗〈𝑤, 𝑤〉 = |𝛼|2‖𝑤‖2 

The subadditivity of the norm follows,  

using Schwarz`s inequality ,from the relations  

‖𝑤 + 𝑧‖2 = 〈𝑤 + 𝑧, 𝑤 + 𝑧〉 ≤ ‖𝑤‖2 + |〈𝑤, 𝑧〉| + |〈𝑧, 𝑤〉| + ‖𝑧‖2    

≤ ‖𝑤‖2 + 2‖𝑤‖‖𝑧‖ + ‖𝑧‖2 

= (‖𝑤‖ + ‖𝑧‖)2                     

‖𝑤 + 𝑧‖ ≤ ‖𝑤‖ + ‖𝑧‖.          

Lemma(2.2.4) [20] 

Let 𝑧𝑛 ⟶ 𝑧 and 𝑤𝑛 ⟶ 𝑤 in an inner product space then  
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〈𝑧𝑛, 𝑤𝑛〉 ⟶ 〈𝑧, 𝑤〉.      

Proof  

Using the theorem(2.2.1) part (1)and part (2) we have  

|〈𝑧𝑛, 𝑤𝑛〉 − 〈𝑧, 𝑤〉| = |〈𝑧𝑛, 𝑤𝑛〉 − 〈𝑧𝑛, 𝑤〉 + 〈𝑧𝑛, 𝑤〉 − 〈𝑧, 𝑤〉|                   

≤ |〈𝑧𝑛, 𝑤𝑛 − 𝑤〉| + |〈𝑧𝑛 − 𝑧, 𝑤〉| 

             ≤ ‖𝑧𝑛‖‖𝑤𝑛 − 𝑤‖ + ‖𝑧𝑛 − 𝑧‖‖𝑤‖ ⟶ 0 

Since 𝑤𝑛 − 𝑤 ⟶ 0 𝑎𝑛𝑑 𝑧𝑛 − 𝑧 ⟶ 0  𝑎𝑠  𝑛 ⟶ ∞.    

Then  |〈𝑧𝑛, 𝑤𝑛〉 − 〈𝑧, 𝑤〉| ⟶ 0. 

2.3 Orthogonal and Orthonormal sets.  

The distance 𝑑 between an element in a metric space 𝑥 ∈ 𝑋 and a nonempty subset 

𝑀 ⊂ 𝑋 is defined as  

𝑑 = 𝑖𝑛𝑓�̂�∈𝑀̀  𝑑(𝑥, �̂�) 

Becomes in a normed space    

𝑑 = 𝑖𝑛𝑓𝑦∈𝑀 ‖𝑥 − �̂�‖ 

We shall show that it is crucial to know whether a 𝑦 ∈ 𝑀 exists, so that 

𝑑 =  ‖𝑥 − 𝑦‖. 

We show some definitions and theorem [13]. 

Definition (2.3.1) 

A segment joining given by 𝑧 = 𝛼𝑥 + (1 − 𝛼)𝑦    (𝛼 ∈ 𝑅 , 0 ≤ 𝛼 ≤ 1) 

is two elements x and y of a vector space X is defined  the set of every 𝑧 ∈ 𝑋 . 

Definition (2.3.2)   

If the segment joining 𝑥 𝑎𝑛𝑑 𝑦 is contained in 𝑀 for any 𝑥, 𝑦 ∈ 𝑀, then the subset 

𝑀 of 𝑋 is said to be convex. 
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If M is a convex set then the theorem(2.3.1) answers on the previous questions . 

Definition(2.3.3) 

If N is a normed space and M a non-empty closed subset. We define the set of 

projections of y onto M by 

𝑃𝑀(𝑦) = {𝑚 ∈ 𝑀: ‖𝑦 − 𝑚‖ = 𝑑𝑖𝑠𝑡(𝑦, 𝑀)}. 

The meaning of 𝑃𝑀(𝑦) be illustrated in Figure(2) for the Euclidean norm in the 

plane. 

 

 

 

 

Theorem (2.3.1) [13]  

If 𝑀 ≠ ∅ is a complete convex subset and 𝑋 be an inner product space. Then, 

there exists a unique 𝑦 ∈ 𝑀, ∀ 𝑥 ∈ 𝑋 so that 

𝑑 = 𝑖𝑛𝑓𝑦∈𝑀 ‖𝑥 − �̂�‖ = ‖𝑥 − 𝑦‖. 

Proof  

1) There is sequence (𝑦𝑛) in M by the definition of an infimum  

hence 

𝑑𝑛 ⟶ 𝑑     𝑤ℎ𝑒𝑟𝑒  𝑑𝑛 = ‖𝑥 − 𝑦𝑛‖. 

Let 𝑦𝑛 − 𝑥 = 𝑣𝑛  , we obtain  ‖𝑣𝑛‖ = 𝑑𝑛 and  

‖𝑣𝑛 + 𝑣𝑚‖ = ‖𝑦𝑛 + 𝑦𝑚 − 2𝑥‖ = 2 ‖
1

2
(𝑦𝑛 + 𝑦𝑚) − 𝑥‖ ≥ 2𝑑 

because M is convex , so that  1

2
(𝑦𝑛 + 𝑦𝑚) ∈ 𝑀. 

Furthermore , we have  𝑦𝑛 − 𝑦𝑚 = 𝑣𝑛 − 𝑣𝑚.  

𝑀 

 𝑦 
 

Fig.2. The set of nearest point Projections 

𝑃 (𝑥) 
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Hence by the parallelogram equality,  

‖𝑦𝑛 − 𝑦𝑚‖2 = ‖𝑣𝑛 − 𝑣𝑚‖2 = −‖𝑣𝑛 + 𝑣𝑚‖2 + 2(‖𝑣𝑛‖2 + ‖𝑣𝑚 ‖2) 

≤ −(2𝑑)2 + 2(𝑑𝑛
2 + 𝑑𝑚

2), 

since  

𝑑𝑛 ⟶ 𝑑     𝑤ℎ𝑒𝑟𝑒  𝑑𝑛 = ‖𝑥 − 𝑦𝑛‖ 

implies that (𝑦𝑛)is Cauchy and converges; 

M is complete , such that, 𝑦𝑛 ⟶ 𝑦 ∈ 𝑀.      

  Since ‖𝑥 − 𝑦‖ ≥ 𝑑  , 𝑦 ∈ 𝑀. From   

𝑑𝑛 ⟶ 𝑑     𝑤ℎ𝑒𝑟𝑒  𝑑𝑛 = ‖𝑥 − 𝑦𝑛‖ ,                                         

‖𝑥 − 𝑦‖ ≤ ‖𝑥 − 𝑦𝑛‖ + ‖𝑦𝑛 − 𝑦‖ = 𝑑𝑛 + ‖𝑦𝑛 − 𝑦‖ ⟶ 𝑑 . 

This shows that ‖𝑥 − 𝑦‖ = 𝑑 . 

2) Let 𝑦 , 𝑦0 ∈ 𝑀 both satisfy  

‖𝑥 − 𝑦‖ = 𝑑  𝑎𝑛𝑑  ‖𝑥 − 𝑦0‖ = 𝑑  

and then y = 𝑦0. 

From theorem (2.1.1)  , 

       ‖𝑦 − 𝑦0‖2 = ‖(𝑦 − 𝑥) − (𝑦0 − 𝑥)‖2  

                            = 2‖𝑦 − 𝑥‖2 + 2‖𝑦0 − 𝑥‖2 − ‖(𝑦 − 𝑥) + (𝑦0 − 𝑥)‖2 

   = 2𝑑2 + 2𝑑2 − 22 ‖
1

2
(𝑦 + 𝑦0) − 𝑥‖

2

. 

On the right , 1

2
(𝑦 + 𝑦0) ∈ 𝑀 , so that  

‖1

2
(𝑦 + 𝑦0) − 𝑥‖ ≥ 𝑑  

 implies that 2𝑑2 + 2𝑑2 − 4𝑑2 = 0 is more than or equal the right- hand side. 

Hence  

‖𝑦 − 𝑦0‖ ≤ 0  
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so , ‖𝑦 − 𝑦0‖ ≥ 0 , so that we must have equality, and y = 𝑦0 . 

Theorem (2.3.2) [20] 

Suppose a Hilbert space is H , 𝑀 ⊂ 𝐻 a non-empty closed and convex subset. 

Then for a point 𝑚𝑦 ∈ 𝑀 the following assertions are equivalent; 

1) 𝑚𝑦 = 𝑃𝑀(𝑦); 

2) 𝑅𝑒〈𝑚 − 𝑚𝑦, 𝑦 − 𝑚𝑦〉 ≤ 0 for all 𝑚 ∈ 𝑀 

 

 

 

Proof 

By translation we can assume that 𝑚𝑦 = 0 . 

Assuming that 

𝑚𝑦 = 0 = 𝑃𝑀(𝑦)    

By definition of 𝑃𝑀(𝑦) , ‖𝑦‖ = ‖𝑦 − 0‖ = inf
𝑚∈𝑀

‖𝑦 − 𝑚‖ ,  

so ‖𝑦‖ ≤ ‖𝑦 − 𝑚‖ for all 𝑚 ∈ 𝑀 . As 𝑜, 𝑚 ∈ 𝑀 and 𝑀 is convex we have  

                     ‖𝑦‖2 ≤ ‖𝑦 − 𝑡𝑚‖2 = ‖𝑦‖2 + 𝑡2‖𝑚‖2 − 2𝑡 𝑅𝑒〈𝑚, 𝑦〉 

for all 𝑚 ∈ 𝑀 and 𝑡 ∈ (0,1] .  

Hence                         

𝑅𝑒〈𝑚, 𝑦〉 ≤
𝑡

2
‖𝑚‖2 

for all 𝑚 ∈ 𝑀 and 𝑡 ∈ (0,1] . If we fix 𝑚 ∈ 𝑀 and let t go to zero , then  

𝑅𝑒〈𝑚, 𝑦〉 ≤ 0 as claimed . Now assume that 𝑅𝑒〈𝑚, 𝑦〉 ≤ 0 for all 𝑚 ∈ 𝑀 and that 

0 ∈ 𝑀 . 

We want to show that 0 = 𝑃𝑀(𝑦) .If 𝑚 ∈ 𝑀 we then have  

𝑦 

Fig.3. Projection onto a convex set 

𝑚𝑦 = 𝑃𝑀(𝑦) 

𝑦 − 𝑚𝑦 
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‖𝑦 − 𝑚‖2 = ‖𝑦‖2 + ‖𝑚‖2 − 2 𝑅𝑒〈𝑦, 𝑚〉 ≥ ‖𝑦‖2 

since 𝑅𝑒〈𝑚, 𝑦〉 ≤ 0 by assumption . As 0 ∈ 𝑀 we conclude that  

‖𝑦‖ = inf
𝑚∈𝑀

‖𝑦 − 𝑚‖, 

so  0 = 𝑃𝑀(𝑦) as claimed . 

Every vector subspace M of a Hilbert space is obviously convex . If it is closed , 

then the above characterization of the projection can be applied . 

The corollary also explains why 𝑃𝑀 is called the orthogonal projection onto M . 

Corollary (2.3.3 ) [20] 

In Hilbert space H  , M is a closed  subspace. Then 𝑚𝑥 = 𝑃𝑀(𝑥) iff  𝑚𝑥 ∈ 𝑀 and 

〈𝑥 − 𝑚𝑥, 𝑚〉 = 0 , ∀𝑚 ∈ 𝑀 . 

Moreover , 𝑃𝑀: 𝐻 ⟶ 𝑀 is linear . 

proof  

By the above theorem 𝑚𝑥 = 𝑃𝑀(𝑥) if and only if 𝑅𝑒〈𝑚𝑥 − 𝑥, 𝑚 − 𝑚𝑥〉 ≤ 0 for all 

𝑚 ∈ 𝑀. Since M is a subspace 𝑚 + 𝑚𝑥 ∈ 𝑀 for all ∈ 𝑀 , 

So using 𝑚 + 𝑚𝑥 instead of m we get that  

𝑅𝑒〈𝑚𝑥 − 𝑥, (𝑚 + 𝑚𝑥) − 𝑚𝑥〉 = 𝑅𝑒〈𝑚𝑥 − 𝑥, 𝑚〉 ≤ 0 

 

 

 

 

 

 Replacing 𝑚 by −𝑚 we obtain  

−𝑅𝑒〈𝑚𝑥 − 𝑥, 𝑚〉 = 𝑅𝑒〈𝑚𝑥 − 𝑥, −𝑚〉 ≤ 0,  

𝑥 

𝑀 

Fig.4. Projection onto a closed space 
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so we must have 𝑅𝑒〈𝑚𝑥 − 𝑥, −𝑚〉 = 0  ∀ 𝑚 ∈ 𝑀 . 

Similarly , replacing 𝑚 = ±𝑖𝑚 if H is a complex Hilbert space we have  

±𝐼𝑚〈𝑚𝑥 − 𝑥, 𝑖𝑚〉 = 𝑅𝑒〈𝑚𝑥 − 𝑥, ±𝑚〉 ≤ 0,  

Also 𝑚〈𝑚𝑥 − 𝑥, 𝑚〉 = 0 . 

So that 〈𝑚𝑥 − 𝑥, 𝑚〉 = 0 for all 𝑚 ∈ 𝑀 as claimed . It remains to show that 𝑃𝑀 is 

linear . If 𝑥, 𝑦 ∈ 𝐻 and , 𝛽 ∈ ℝ , then by what we just proved                                     

                                      0 = 𝛼〈𝑥 − 𝑃𝑀(𝑥) , m〉 + 𝛽〈𝑦 − 𝑃𝑀(𝑦) , m〉 

= 〈𝛼𝑥 + 𝛽𝑦 − (𝛼𝑃𝑀(𝑥) + 𝛽𝑃𝑀(𝑦)), 𝑚〉 

for all 𝑚 ∈ 𝑀 . Hence a gain by what proved 𝑃𝑀(𝛼𝑥 + 𝛽𝑦) = 𝛼𝑃𝑀(𝑥) + 𝛽𝑃𝑀(𝑦), 

showing that 𝑃𝑀 is linear . 

Lemma(2.3.4) [13]  

If M is a complete subspace Y and 𝑥 ∈ 𝑋 fixed. Assume that X is an inner product 

space. Then 𝑧 = 𝑥 − 𝑌  is orthogonal to Y.  

Proof  

Let 𝑧 ⊥ 𝑌 were false, 𝑦1 ∈ 𝑌 would exist.  

so that 〈𝑧, 𝑦1〉 = 𝛽 ≠ 0.since , 𝑦1 ≠ 0  

 otherwise  〈𝑧, 𝑦1〉 = 0, 

furthermore , for any scalar 𝛼, 

‖𝑧 − 𝛼𝑦1‖2 = 〈𝑧 − 𝛼𝑦1 , 𝑧 − 𝛼𝑦1 〉 

        =〈𝑧, 𝑧〉 − �̅�〈𝑧, 𝑦1〉 − 𝛼[〈𝑦1, 𝑧〉 − �̅�〈𝑦1, 𝑦1〉] 

= 〈𝑧, 𝑧〉 − �̅�𝛽 − 𝛼[�̅� − �̅�〈𝑦1, 𝑦1〉].       

The expression in the brackets [�̅� − �̅�〈𝑦1, 𝑦1〉] is zero if we choose �̅� =
�̅�

〈𝑦1,𝑦1〉
 . 

We have  ‖𝑧‖ = ‖𝑥 − 𝑦‖ = 𝑑 , so that our equation now yields  
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‖𝑧 − 𝛼𝑦1‖2 = ‖𝑧‖2 −
|𝛽|2

〈𝑦1, 𝑦1〉
< 𝑑2 

but this is impossible because we have  

𝑧 − 𝛼𝑦1 = 𝑥 − 𝑦2 where  𝑦2 = 𝑦 + 𝛼𝑦1 ∈ 𝑌  , 

So that ‖𝑧 − 𝛼𝑦1‖ > 𝑑 by the definition of d . 

Hence 〈𝑧, 𝑦1〉 = 𝛽 ≠ 0 cannot hold and, the Lemma is proved . 

 

2.4 Orthogonal Complements and Direct Sums. 

Definition (2.4.1) 

If subspaces Z and W of a vector space X then X is called the direct sum ,such that 

𝑋 = 𝑍⨁𝑊, 

if any 𝑥 ∈  𝑋 is represented a unique 

𝑥 = 𝑧 + 𝑤  , 𝑧 ∈ 𝑍  , 𝑤 ∈ 𝑊. 

When this occurs, Z and W are called complementary pairs of subspaces in X and 

vice versa and  W is said to the algebraic complement of Z in X.  

The main interest  concerns representations of H, in the case of general Hilbert 

space H 

The orthogonal complement is a direct sum of a closed subspace Y such that  

Z⊥ = {𝑤 ∈ 𝐻 ; 𝑤 ⊥ 𝑍}, 

It`s the set of all vectors orthogonal to Z . 

Theorem (2.4.1) [11] 

If Z is each closed subspace of Hilbert space H. Then  

𝐻 = 𝑍⨁𝑊 
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Proof  

Since Z is closed and 𝑍, 𝐻 are complete. 

Since Z is convex , for every 𝑥 ∈ 𝐻  there is 𝑎   𝑧 ∈ 𝑍  such that  

𝑥 = 𝑧 + 𝑤     𝑤 ∈ 𝑊 = Z⊥ 

To prove uniqueness , suppose that  

𝑥 = 𝑧 + 𝑤 = 𝑧1 + 𝑤1 

where 𝑧 , 𝑧1 ∈ 𝑍  and  𝑤 , 𝑤1 ∈ 𝑊   .  

Then  𝑧 − 𝑧1 = 𝑤1 − 𝑤.   

Since   𝑧 − 𝑧1 ∈ 𝑍   whereas  𝑤1 − 𝑤 ∈ 𝑊 = Z⊥,    

and   𝑧 − 𝑧1 ∈ 𝑍⋂ Z⊥ = {0}.      

This implies  𝑧 = 𝑧1. Hence also  𝑤1 = 𝑤. 

Theorem (2.4.2) [1] 

Let  linear operator be T from vector space Y into vector space X. Then  

dim 𝑌 = dim ker 𝑇 + dim 𝑅(𝑇). 

Proof  

We  assume that B is completed for 𝑘𝑒𝑟𝑇  space in Y                                                   

imply that  𝑌 = ker 𝑇 ⨁𝐵 . Then  

dim 𝑌 = dim ker 𝑇 + dim 𝐵. 

Such that  

dim 𝐵 = dim 𝑅(𝑇) 

Implies  

dim 𝑌 = dim ker 𝑇 + dim 𝑅(𝑇)  . 
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Since P is a bounded linear operator.Where P maps  H onto Y, and  maps Y onto 

itself,  

𝑧 = Y⊥ 𝑜𝑛𝑡𝑜   {0}, 

and  P is idemptent  , that is  𝑃2=P; 

hence , for all  𝑥 ∈ 𝐻, 𝑃2𝑥=𝑃(𝑃𝑥) = 𝑃𝑥 . 

Lemma(2.4.3) [13] 

If H is a Hilbert space and Z be a closed subspace of H ,then  𝑍 = 𝑍⊥⊥  

Proof  

we have 𝑍 ⊂ 𝑍⊥⊥ because  𝑦 ∈ 𝑍 

implies  𝑦 ⊥ 𝑍⊥ and  𝑦 ∈ (𝑍⊥⊥)  

Now. Let ∈ 𝑍⊥⊥ . Then  

𝑦 = 𝑧 + 𝑤  𝑤ℎ𝑒𝑟𝑒  𝑧 ∈  𝑍 ⊂ 𝑍⊥⊥. 

Since 𝑦 ∈ 𝑍⊥⊥ 𝑏𝑒𝑐𝑢𝑠𝑒   𝑍⊥⊥  is a vector space, 

we have 𝑤 = 𝑦 − 𝑧 ∈ 𝑍⊥⊥,  

hence, 𝑤 ⊥ 𝑍⊥ . But 𝑦 ∈ 𝑍⊥. Together  𝑤 ⊥ 𝑤,  

so that  w=0, y=z, thus, 𝑦 ∈ 𝑍.  

Since 𝑦 ∈ 𝑍⊥⊥ ,this proves 𝑍⊥⊥ ⊂ 𝑍. 

Theorem (2.4.4) [15] 

The orthogonal space of subsets 𝐵 ⊂ 𝑌, 

𝐵⊥ = {𝑦 ∈ 𝑌 ;  〈𝑦, 𝑏〉 = 0 , ∀ 𝑏 ∈ 𝐵}, 

satisfy  

1)  𝐵 ∩ 𝐵⊥ ⊆  {0}, 

2) 𝐵⊥ be a closed subspace of Y. 
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Proof 

1) Let a vector 𝑏 ∈ 𝐵 is in 𝐵⊥ , then its orthogonal to all vectors in B , 

including itself  , 〈𝑏, 𝑏〉 = 0 , 𝑠𝑜 𝑏 = 0. 

2) Let y  and z are in 𝐵⊥ and 𝑏 ∈ 𝐵, then  

〈𝛼𝑦, 𝑏〉 = �̅�〈𝑦, 𝑏〉 = 0 , 

〈𝑦 + 𝑧 , 𝑏〉 = 〈𝑦, 𝑏〉 + 〈𝑧, 𝑏〉 = 0, 

So  𝛼𝑦 , 𝑦 + 𝑧 ∈ 𝐵⊥.  If 𝑦𝑛 ∈ 𝐵⊥ and 𝑦𝑛 ⟶ 𝑦, then 

0 = 〈𝑦𝑛 , 𝑏〉 ⟶ 〈𝑦, 𝑏〉 , 𝑎𝑛𝑑  y ∈ 𝐵⊥. 

Theorem (2.4.5) [13] 

𝑆⊥ = {0} iff the span of S is dense in H for each subset 𝑆 ≠ ∅ of a Hilbert 

space H .                  

Proof  

assume 𝑆⊥ = {0}. Let 𝑧 ⊥ 𝑉, then 𝑧 ⊥ 𝑆, hence 𝑧 ∈ 𝑆⊥ and 𝑧 = 0. Thus 𝑉⊥ =

{0}. Such that 𝑉 is subspace of H, we obtain  �̅� = 𝐻 with 𝑍 = �̅�.           

Conversely, If z ∈ 𝑆⊥ and suppose 𝑉 = 𝑠𝑝𝑎𝑛 𝑆 is dense in H .                    

Then ∈ �̅� = 𝐻 . 

This implies the sequence (𝑧𝑛),which is existed in V such that 𝑧𝑛 ⟶ 𝑧.                              

So that 𝑧 ∈ 𝑆⊥ and 𝑆⊥ ⊥ 𝑉,  

since  〈𝑧𝑛, 𝑧〉 = 0.  

By Lemma (2.2.4) implies that  

〈𝑧𝑛 , 𝑧〉 ⟶ 〈𝑧, 𝑧〉.  

Together, 〈𝑧, 𝑧〉 = ‖𝑧‖2 = 0,  

thus 𝑧 = 0. Since 𝑧 ∈ 𝑆⊥, hence 𝑆⊥ = {0}. 
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Theorem(2.4.6) [15] 

Let M is a closed vector subspace of  a Hilbert space H ,then 𝑤 ∈ 𝑀 is the 

closest point 𝑤 to 𝑧 ∈ 𝐻 if and only ,  𝑧 − 𝑤 ∈ 𝑀⊥.   

The map 𝑝: 𝑧 ⟶ 𝑤 is a continuous, orthogonal projection with  𝐼𝑚𝑝 = 𝑀 

orthogonal to ker 𝑃 = 𝑀⊥, so 𝐻 = 𝑀⨁𝑀⊥ 

Proof  

1) If a be any nonzero point of M and let 𝑐 ≔ 𝑧 − (𝑤 + 𝛼𝑏)  𝑤ℎ𝑒𝑟𝑒 𝛼  is 

chosen  

So that ⊥ 𝑐 , that is , 𝛼 ≔ 〈𝑏, 𝑧 − 𝑤〉 ‖𝑏‖2.⁄   

By(Pythagoras) ,we get  

‖𝑧 − 𝑤‖2 = ‖𝑐 + 𝛼𝑏‖2 = ‖𝑐‖2 + ‖𝛼𝑏‖2 ≥ ‖𝑐‖2 

Making  𝑤 + 𝛼𝑏  even closer to x than the closest point y , unless 

                        𝛼 = 0  , 〈𝑏, 𝑧 − 𝑤〉 = 0. 

     Since  𝑏 is arbitrary , thus (𝑧 − 𝑤) ⊥ 𝑀. 

Conversely , let  (𝑧 − 𝑤) ⊥ �̀�   for each �̀� ∈ 𝑀, then (𝑧 − 𝑤) ⊥ (�̀� − 𝑤)  and 

(Pythagoras) implies  

‖𝑧 − �̀�‖
2

= ‖𝑧 − 𝑤‖2 + ‖𝑤 − �̀�‖
2
 , 

So that  ‖𝑧 − 𝑤‖ ≤ ‖𝑧 − �̀�‖ , let w the closest point in M to z. 

2)  For any  𝑧 ∈ 𝐻 ,𝑃(𝑧) is that unique vector in M such that  

𝑧 − 𝑃(𝑧) ∈ 𝑀⊥. 

 This characteristic property has the following  

P is linear since  (𝑧 + 𝑤) − (𝑝𝑧 + 𝑝𝑤)=(𝑧 − 𝑝𝑧) + (𝑤 − 𝑝𝑤) ∈ 𝑀⊥, 

𝑝𝑧 + 𝑝𝑤 ∈ 𝑀, ℎ𝑒𝑛𝑐𝑒  𝑝(𝑧 + 𝑤) = 𝑝𝑧 + 𝑝𝑤 . 
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Similarly, 𝑝(𝛼𝑧) = 𝛼𝑝𝑧. 

The closest point in M to 𝑏 ∈ 𝑀 is a itself, 𝑝𝑏 = 𝑏 , 𝑠𝑜 𝐼𝑚𝑝 = 𝑀. 

Since 𝑝𝑧 ∈ 𝑀, it also follows that  𝑝2𝑧 = 𝑝𝑧, and 𝑝2 = 𝑝. 

When ∈ 𝑀⊥ , then 𝑧 − 0 ∈ 𝑀⊥ and 0 ∈ 𝑀 so 𝑝𝑧 = 0. 

As 𝑝𝑧 = 0 implies 𝑧 = 𝑧 − 𝑝𝑧 ∈ 𝑀⊥  , this just itself  ker 𝑝 = 𝑀⊥. 

since ‖𝑧‖2 = ‖𝑧 − 𝑝𝑧‖2 + ‖𝑝𝑧‖2 ,P is continuous 

thus ‖𝑝𝑧‖ ≤ ‖𝑧‖. 

hence 𝐻 = 𝐼𝑚 𝑝⨁𝑘𝑒𝑟 𝑝 = 𝑀⨁𝑀⊥,since any vector can be decomposed as  

𝑧 = 𝑝𝑧 + (𝑧 − 𝑝𝑧)    , 𝑎𝑛𝑑  𝑀 ∩ 𝑀⊥ = {0} . 

 

2.5 Orthonormal sets and Sequences  

In this section we will show some definition and important theorem . 

Definition (2.5.1) 

Let 𝑋 be an orthogonal set 𝑀 in the inner product space 𝑋  is a subset of 𝑀 ⊂ 𝑋 

with pairwise orthogonal elements. For all 𝑦, 𝑧 ∈ 𝑀,  

〈𝑦, 𝑧〉 = {
0       𝑖𝑓  𝑦 ≠ 𝑧
1        𝑖𝑓  𝑦 = 𝑧.

 

making an orthonormal set 𝑀 ⊂ 𝑋 an orthogonal set in X with elements of norm 1. 

An indexed set or family, (𝑦𝛼), 𝛼 ∈ 𝐼   ; is called orthogonal if 𝑦𝛼 ⊥

𝑦𝛽  𝑓𝑜𝑟 𝑎𝑙𝑙  𝛼, 𝛽 ∈ 𝐼   𝛼 ≠ 𝛽 is an orthogonal or orthonormal set M is countable, 

the sequence (𝑦𝑛), and it is an orthogonal or orthonormal sequence. 

If family is orthogonal and all 𝑦𝛼 have norm 1 ,then it is called orthonormal 

 for all  𝛼, 𝛽 ∈ 𝐼 hence  

〈𝑦𝛼 , 𝑦𝛽〉 = 𝑆𝛼𝛽 = {
0       𝑖𝑓  𝛼 ≠ 𝛽,
1        𝑖𝑓  𝛼 = 𝛽.
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Here , 𝑆𝛼𝛽 is the kronecker delta .  

Next we give some examples.   

Examples(2.5.1) 

1) Space  𝑙2 . In this space,  (𝑒𝑛) is an orthonormal sequence when 𝑒𝑛 =

(𝑆𝑛𝑗) has the 𝑛𝑡ℎ element 1  and all others zero  

2) Space  ℝ3. (1,0,0) , (0,1,0) , (0,0,1) is three unit vectors in this space. 

Theorem (2.5.1) [13] 

If an orthonormal set then is linearly independent  . 

Proof 

If {𝑒1 , … , 𝑒𝑛} is orthonormal and consider the equation  

𝛼1𝑒1 + ⋯ + 𝛼𝑛𝑒𝑛 = 0. 

∑ 𝛼𝑖𝑒𝑖 = 0 

Multiplication by a fixed 𝑒𝑗 gives 

〈∑ 𝛼𝑖𝑒𝑖
𝑛
𝑗=1  , 𝑒𝑗〉 = ∑ 𝛼𝑖

𝑛
𝑗=1 〈𝑒𝑖 , 𝑒𝑗〉 = 𝛼𝑗〈𝑒𝑖 , 𝑒𝑗〉 = 𝛼𝑗 = 0  ;  ∀ 𝑗 = 1, … , 𝑛. 

The following theorem, Gram Schmidt, which proves  shows how to transform the 

linear independent sets 

Into orthogonal sets, and to transform these sets into orthonormal sets in the inner 

product spaces. 

 Theorem (2.5.2) [19] 

Let X inner product space 

If  {𝑦𝑛}𝑛=1
∞   linearly independent sequence in X, then there sequence  {𝑧𝑛}𝑛=1

∞   

from orthonormal vector such that   

𝑠𝑝𝑎𝑛{𝑦𝑛} = 𝑠𝑝𝑎𝑛{𝑧𝑛}. 
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Proof  

Note that  𝑦𝑛 ≠ 0 for any n. Because set {𝑦𝑛} is linearly independent. 

Let  

 𝑧1 =
𝑤1

‖𝑤1‖
  , 𝑤1 = 𝑦1                                                          

𝑧2 =
𝑤2

‖𝑤2‖
  , 𝑤2 = 𝑦2   − 〈𝑦2, 𝑧1〉𝑧1                                    

⋮                                                                                              

𝑧𝑛+1 =
𝑤𝑛+1

‖𝑤𝑛+1‖
  , 𝑤𝑛+1 =  𝑦𝑛+1 − ∑〈𝑦𝑛+1 , 𝑧𝑘〉

𝑛

𝑘=1

𝑧𝑘 

note that 𝑧1 ⊥ 𝑤2, and also 𝑤𝑛+1 orthogonal with for every  𝑧1 , 𝑧2 , … , 𝑧𝑛 

note that {𝑧𝑛}𝑛=1
∞  is orthonormal, 

and 𝑧𝑛 is linear combination for element 𝑦1 , 𝑦2 , … 

Conversely , hence   

𝑠𝑝𝑎𝑛{𝑦𝑛} = 𝑠𝑝𝑎𝑛{𝑤𝑛} 

The following result determined the linear combination for the elements of 

orthonormal sequences . 

Theorem (2.5.3) Bessel inequality [15]  

If  the orthonormal sequence{𝑦𝑛}𝑛=1
∞  in an inner product space X . Then ∀𝑦 ∈ 𝑋  

∑|〈𝑦 , 𝑦𝑗〉|
2

∞

𝑗=1

≤ ‖𝑦‖2 

Proof 

We have  

|〈𝑦 , 𝑦𝑗〉|
2

≤  |〈𝑦 , 𝑦1〉|2 ≤ |〈𝑦 , 𝑦2〉|2  ≤ ⋯ 
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This show that sequence  {∑ |〈𝑦 , 𝑦𝑗〉|
2𝑛

𝑗=1 }
𝑛=1

∞

 as bounded increasing series, 

 then  

∑ |〈𝑦 , 𝑦𝑗〉|
2∞

𝑗=1   is convergent.  

Now  

0 ≤ 〈𝑦 − ∑〈𝑦, 𝑦𝑗〉

𝑛

𝑗=1

𝑦𝑗  , 𝑦 − ∑〈𝑦, 𝑦𝑗〉

𝑛

𝑗=1

𝑦𝑗  〉 

= ‖𝑦‖2 − ∑|〈𝑦 , 𝑦𝑗〉|
2

𝑛

𝑗=1

 

hence  

∑|〈𝑦 , 𝑦𝑗〉|
2

𝑛

𝑗=1

≤ ‖𝑦‖2 

As  𝑛 ⟶ ∞ we obtain  

∑ |〈𝑦 , 𝑦𝑗〉|
2∞

𝑗=1 ≤ ‖𝑦‖2. 

Definition (2.5.2) 

Let  H is a Hilbert space and {𝑥𝑖}  be an orthonormal sequence in H, then for 

every 𝑥 ∈ 𝐻, 

The Fourier coefficient of x is 〈𝑥 , 𝑥𝑖〉 and ∑ 〈𝑥, 𝑥𝑖〉∞
𝑖=1 𝑥𝑖 is  

Fourier series  with respect to {𝑥𝑖} . 

Definition (2.5.3) 

In normed space V , {𝑥𝑛} be a sequence, say  that ∑ 𝑥𝑛
∞
𝑛=1  converges and has 

Sum 𝑥(∑ 𝑥𝑛
∞
𝑛=1 = 𝑥) if  ∑ 𝑥𝑛 ⟶ 𝑥𝑁

𝑛=1  as ℕ ⟶ ∞. 

‖𝑥 − ∑ 𝑥𝑛
𝑁
𝑛−1 ‖ ⟶ 0   𝑎𝑠   ℕ ⟶ ∞.  
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Theorem(2.5.4) [11] 

If {𝛼𝑘} is a sequence in ℂ ,and if {𝑒𝑘} be an orthonormal sequence in Hilbert 

space H .Then ∑ 𝛼𝑘𝑒𝑘
∞
𝑘=1  converges in H iff  ∑ |𝛼𝑘|2 < ∞∞

𝑘=1 . 

Proof  

(⟹)Let 𝑥 = ∑ 𝛼𝑘𝑒𝑘
∞
𝑘=1  and  𝑥𝑘 = ∑ 𝛼𝑘𝑒𝑘

𝑁
𝑘=1 , then 〈𝑥𝑁 , 𝑒𝑘〉 = 𝛼𝑘 for 𝑘 < 𝑁. 

and taking  𝑁 ⟶ ∞, gives 〈𝑥 , 𝑒𝑘〉 = 𝛼𝑘 .Then by Bessel inquality  

∑|𝛼𝑘|2

∞

𝑘=1

= ∑|〈𝑥, 𝑒𝑘〉|2

∞

𝑘=1

≤ ‖𝑥‖2 < ∞. 

(⟸)  

Assume that  ∑ |𝛼𝑘|2∞
𝑘=1 < ∞ , and let 𝑥𝑘 = ∑ 𝛼𝑘𝑒𝑘

𝑁
𝑘=1 . Then  

‖𝑥𝑁+𝑝 − 𝑥𝑁‖
2

= ‖ ∑ 𝛼𝑘𝑒𝑘

𝑁+𝑝

𝑘=𝑁+1

‖

2

= ∑ ‖𝛼𝑘𝑒𝑘‖2

𝑁+𝑝

𝑘=𝑁+1

 

= ∑ |𝛼𝑘|2

𝑁+𝑝

𝑘=𝑁+1

⟶ 0  𝑎𝑠  𝑁 ⟶ ∞. 

Therefore {𝑥𝑁} is Cauchy, and  it converges in H . 

Theorem (2.5.5) [13]  

If H a Hilbert space and (𝑒𝑘) is an orthonormal sequence in H .Then  

let ∑ 𝛼𝑘𝑒𝑘
∞
𝑘=1  converges , then the cofficients 𝛼𝑘 are the Fourier cofficients  

〈𝑥, 𝑒𝑘〉 , when x denotes the sum of  ∑ 𝛼𝑘𝑒𝑘
∞
𝑘=1  ; hence , ∑ 𝛼𝑘𝑒𝑘

∞
𝑘=1  

can be written  

𝑥 = ∑〈𝑥, 𝑒𝑘〉

∞

𝑘=1

𝑒𝑘 .                             
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 Proof  

By using the orthonormality and taking the inner product of 𝑠𝑛 and 𝑒𝑗 and, we 

obtain  

〈𝑠𝑛, 𝑒𝑗〉 = 𝛼𝑗  for 𝑗 = 1, … , 𝑘       (𝑘 ≤ 𝑛  𝑎𝑛𝑑 𝑓𝑖𝑥𝑒𝑑). 

By assumption , 𝑠𝑛 ⟶ 𝑥. By Lemma (2.2.4),the inner product is continuous                             

𝛼𝑗 = 〈𝑠𝑛, 𝑒𝑗〉 ⟶ 〈𝑥, 𝑒𝑗〉                 (𝑗 ≤ 𝑘). 

and take 𝑘(≤ 𝑛) as large as we please because n ⟶ ∞ ,  

hence 

𝛼𝑗 = 〈𝑥, 𝑒𝑗〉    𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦  𝑗 = 1,2, …. 

 

Lemma (2.5.6) [13] 

for any 𝑥 ∈ 𝑋 if X is an inner product space can have at most countably many 

nonzero Fourier coefficients 〈𝑥, 𝑒𝑘〉 with respect to an orthonormal 

family(𝑒𝑘), 𝑘 ∈ 𝐼 , 𝑖𝑛 𝑋. 

proof 

We can associate a series similar to 𝑥 = ∑ 〈𝑥, 𝑒𝑘〉∞
𝑘=1 𝑒𝑘 for any fixed 𝑥 ∈ 𝐻 

∑ 〈𝑥, 𝑒𝑘〉𝑘∈𝐼 𝑒𝑘  and we can arrange the 𝑒𝑘 with 〈𝑥, 𝑒𝑘〉 ≠ 0 in a sequence 

(𝑒1, 𝑒2 , … ) , so that ∑ 〈𝑥, 𝑒𝑘〉𝑘∈𝐼 𝑒𝑘  takes the form 𝑥 = ∑ 〈𝑥, 𝑒𝑘〉∞
𝑘=1 𝑒𝑘. 

convergence by Theorem (2.5.5)  . 

If (𝑤𝑚) is a rearrangement of  (𝑒𝑛). In order for the corresponding terms of the 

two sequences to be equal , since there exists a bijective mapping 𝑛 ⟼ 𝑚(𝑛) 

of N onto itself . Thus , 𝑤𝑚(𝑛) = 𝑒𝑛 . 

We set 

𝛼𝑛 = 〈𝑥, 𝑒𝑛〉    , 𝛽𝑚 = 〈𝑥, 𝑤𝑚〉 
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and  

𝑥1 = ∑ 𝛼𝑛𝑒𝑛         , 𝑥2 = ∑ 𝛽𝑚𝑤𝑚

∞

𝑚=1

∞

𝑛=1
. 

Then by Theorem (2.5.5), 

𝛼𝑛 = 〈𝑥, 𝑒𝑛〉 = 〈𝑥1, 𝑒𝑛〉      ,     𝛽𝑚 = 〈𝑥, 𝑤𝑚〉 = 〈𝑥2, 𝑤𝑚〉. 

 Since  𝑒𝑛 = 𝑤𝑚(𝑛) ,we thus obtain  

〈𝑥1 − 𝑥2 , 𝑒𝑛〉 = 〈𝑥1, 𝑒𝑛〉 − 〈𝑥2 , 𝑤𝑚(𝑛)〉 

= 〈𝑥, 𝑒𝑛〉 − 〈𝑥 , 𝑤𝑚(𝑛)〉 = 0 

 and similarly 〈𝑥1 − 𝑥2 , 𝑤𝑚〉 = 0 . This implies  

‖𝑥1 − 𝑥2‖2 = 〈𝑥1 − 𝑥2 , ∑ 𝛼𝑛𝑒𝑛 − ∑ 𝛽𝑚𝑤𝑚〉 

= ∑ 𝛼𝑛̅̅̅̅ 〈𝑥1 − 𝑥2, 𝑒𝑛〉 − ∑ 𝛽𝑚
̅̅ ̅̅ 〈𝑥1 − 𝑥2, 𝑤𝑚〉 = 0 . 

Consequently , 𝑥1 − 𝑥2 = 0    𝑎𝑛𝑑 𝑥1 = 𝑥2 . 

Since the rearrangement (𝑤𝑚) of (𝑒𝑛) was arbitrary . 

2.6 Total Orthonormal Setes and Sequences.   

Definition(2.6.1) 

An orthonormal set A in an inner product space X cannot be expanded to a larger 

orthonormal set and X is maximal if the only point in X which is orthogonal to 

every 𝑦 ∈ 𝐴 is 0 . Also ,A is total if its span is dense in X ; in this case , every 𝑦 ∈

𝑋 so that as 𝑦 = ∑ 〈𝑦, 𝑒〉𝑒∈𝐴 𝑒 ,and A is said to be an orthonormal basis of X.  

𝑠𝑝𝑎𝑛 𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑋 if and only if  𝐴 is total in X.  

Theorem (2.6.1) [19] 

If X is an inner product space and B be a subset of X. Then  
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1) Let B be total in X , there is no nonzero 𝑥 ∈ 𝑋 that is orthogonal to each 

element of B;  

𝑥 ⊥ 𝐵 ⟹ 𝑥 = 0 

2) Let X be complete, then the totality of B in X is sufficient satisfies that 

condition. 

Proof  

1) If X is considered a subspace of H and H is the completion of X, then X is 

dense in H. Considering that B is total in X, span B is dense in X and hence 

dense in H. Theorem (2.4.5) now implies that the orthogonal complement 

of B  in H is {0} . If 𝑥 ∈ 𝑋 and  𝑥 ⊥ 𝐵 , 𝑡ℎ𝑒𝑛 𝑥 = 0 . 

2) Let B satisfies 𝑥 ⊥ 𝐵 ⟹ 𝑥 = 0  and X be  a Hilbert space, hence  𝐵⊥ =

{0}  , then  Theorem (2.4.5) implies that B is total in X . 

Theorem (2.6.2) [13] 

If a Hilbert space is H .Then  

1) Assuming that H is separable, each orthonormal set in H  can be countable. 

2) Let H contains an orthonormal sequence that is total in H, then H can be 

separable. 

Proof  

1) Let M any orthonormal set and B any dense set in H. Then  

any two distinct elements x and y of  M have distance √2  Thus 

‖𝑥 − 𝑦‖2 = 2 . 

Since 𝑁𝑥 of x and 𝑁𝑦 of y are spherical neighborhoods radius √2 3⁄  disjoint. 

There is a 𝑏1 ∈ 𝐵 𝑖𝑛 𝑁𝑥 and  a 𝑏2 ∈ 𝐵 𝑖𝑛  𝑁𝑦 and  𝑏1 ≠ 𝑏2 ,since B is dense in 

H 

since 𝑁𝑥 ∩ 𝑁𝑦 = ∅ . Because of this, if M were uncountable, there would be an 

infinite number of these pairwise disjoint spherical neighborhoods ( ∀𝑥 ∈ 𝑀 
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one of them), making B uncountable. Given that B might be any dense set, 

separability is contradicted since H cannot contain a dense set that is 

countable. This leads us to the conclusion that M must be countable. 

2) Assuming that (𝑒𝑘) is a total orthonormal sequence in H the set of all 

possible linear combinations 

𝛼1
(𝑛)𝑒1 + 𝛼2

(𝑛)𝑒2 + ⋯ + 𝛼𝑛
(𝑛)𝑒𝑛            𝑛 = 1,2, … 

where  𝛼𝑘
(𝑛) = 𝑎𝑘

(𝑛) + 𝑖𝑏𝑘
(𝑛)

  and 𝑎𝑘
(𝑛) and 𝑏𝑘

(𝑛)
 are rational  

( and 𝑏𝑘
(𝑛)

= 0 𝑖𝑓  𝐻 𝑖𝑠 𝑟𝑒𝑎𝑙 ). 𝐴 is countable . 

By showing that for every 𝑧 ∈ 𝐻  𝑎𝑛𝑑 𝜖 > 0 there is a 𝑣 ∈ 𝐴 such that 

‖𝑧 − 𝑣‖ < 𝜖 to prove that  𝐴 is dense in H. 

There is an n such that 𝑌𝑛 = 𝑠𝑝𝑎𝑛 {𝑒1 , … 𝑒𝑛}, So that (𝑒𝑘) is total in H 

We obtain 

‖𝑧 − 𝑦‖ < 𝜖 2⁄   for the orthogonal projection 𝑦 ∈ 𝑌𝑛 𝑎𝑛𝑑 𝑧 𝑜𝑛 𝑌𝑛. 

Now  

𝑌 = ∑〈𝑧, 𝑒𝑘〉

𝑛

𝑘=1

𝑒𝑘. 

Hence   

‖𝑧 − ∑〈𝑧, 𝑒𝑘〉

𝑛

𝑘=1

𝑒𝑘‖ < 𝜖 2⁄  

The rationals in ℝ are dense , for every  〈𝑧, 𝑒𝑘〉 exist 𝛼𝑘
(𝑛) such that  

‖∑[〈𝑧, 𝑒𝑘〉 − 𝛼𝑘
(𝑛)]

𝑛

𝑘=1

𝑒𝑘‖ < 𝜖 2⁄ . 

Hence 𝑣 ∈ 𝐴 defined by  
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𝑣 = ∑ 𝛼𝑘
(𝑛)

𝑛

𝑘=1

𝑒𝑘 

𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠   

‖𝑧 − 𝑣‖ = ‖𝑧 − ∑ 𝛼𝑘
(𝑛)𝑒𝑘‖ 

≤ ‖𝑧 − ∑〈𝑧, 𝑒𝑘〉𝑒𝑘‖ + ‖∑〈𝑧, 𝑒𝑘〉𝑒𝑘 − ∑ 𝛼𝑘
(𝑛)𝑒𝑘‖ 

< 𝜖 2⁄ + 𝜖 2⁄ = 𝜖. 

𝑇ℎ𝑖𝑠 𝑝𝑟𝑜𝑣𝑒𝑠 𝑡ℎ𝑎𝑡 𝐴 𝑖𝑠 𝑑𝑒𝑛𝑐𝑒 𝑖𝑛 𝐻,   𝑠𝑖𝑛𝑐𝑒 𝐴 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝐻 𝑖𝑠 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 .                                                     

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  62 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter Three 

 

 

 

 

 

 

 

 

 



  63 
 

3 Linear Operators on Hilbert Spaces 

We have discussed basic concept of linear operators  already. and this section here 

we want to prove some quiteun expected results on bounded linear operator on 

Hilbert spaces. 

3.1 Linear Functionals on Hilbert Spaces.  

Riez`s Theorem (3.1.1) [13] 

Let H a Hilbert space and  𝑓  be bounded linear functional on H then H is 

equivalent to the inner product, 

𝑓(𝑥) = 〈𝑦, 𝑤〉, 

When w depends on f, f determines it uniquely, and its norm is  

‖𝑤‖ = ‖𝑓‖ 

Proof  

If 𝑓 = 0 . 𝑇ℎ𝑒𝑛 𝑓 has a representation if we take = 0 . 

Let ≠ 0 , this implies  𝑤 ≠ 0 , thus otherwise 𝑓 = 0. 

And 〈𝑦, 𝑤〉 = 0 , ∀ 𝑦, where 𝑓(𝑦) = 0, such that,  for every y in the null space 

𝑁(𝑓) of 𝑓 . Thus 𝑤 ⊥  𝑁(𝑓). The implication is that we take into account 

𝑁(𝑓)and its orthogonal  complement 𝑁(𝑓)⊥ .  

𝑁(𝑓)  be closed and  a vector space. 𝑁(𝑓) ≠ 𝐻 is implied by 𝑓 ≠ 0, 

thus 𝑁(𝑓)⊥ ≠ {0}. Hence contains a 𝑤0 ≠ 0. we set  

𝑢 = 𝑓(𝑦)𝑤0 − 𝑓(𝑤0)𝑦, 

where 𝑦 ∈ 𝐻  is arbitrary Applying f, hence  

𝑓(𝑢) = 𝑓(𝑦)𝑓(𝑤0) − 𝑓(𝑤0)𝑓(𝑦) = 0 

thus ∈ 𝑁(𝑓) . since  𝑤0 ⊥ 𝑁(𝑓), 

we obtain  

0 = 〈𝑢, 𝑤0〉 = 〈𝑓(𝑦)𝑤0 − 𝑓(𝑤0)𝑦 , 𝑤0〉 
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= 𝑓(𝑦)〈𝑤0 , 𝑤0〉 − 𝑓(𝑤0)〈𝑦, 𝑤0〉.  

Noting that 〈𝑤0 , 𝑤0〉 = ‖𝑤0‖2 ≠ 0 , we can solve for 𝑓(𝑦). 

hence 

𝑓(𝑦) =
𝑓(𝑤0)

〈𝑤0 , 𝑤0〉
〈𝑦, 𝑤0〉. 

Since it was arbitrary, this can be expressed as 𝑓(𝑦) = 〈𝑦, 𝑤〉 where  

𝑤 =
𝑓(𝑤0)̅̅ ̅̅ ̅̅ ̅̅ ̅

〈𝑤0 ,𝑤0〉
𝑤0. 

We prove  w in 𝑓(𝑦) = 〈𝑦, 𝑤〉 is unique . 

Suppose that for ∈ 𝐻 , 

𝑓(𝑦) = 〈𝑦, 𝑤1〉 = 〈𝑦, 𝑤2〉. 

Then 〈𝑦, 𝑤1 − 𝑤2〉 = 0  for every y . choosing = 𝑤1 − 𝑤2 ,  

we have  

〈𝑦, 𝑤1 − 𝑤2〉 = 〈𝑤1 − 𝑤2 , 𝑤1 − 𝑤2〉 = ‖𝑤1 − 𝑤2‖2 = 0. 

Hence 𝑤1 − 𝑤2 = 0 , so that 𝑤1 = 𝑤2 , the uniqueness . 

Now  

Let 𝑓 = 0, then 𝑤 = 0  𝑎𝑛𝑑  ‖𝑤‖ = ‖𝑓‖  ℎ𝑜𝑙𝑑. 

If 𝑓 ≠ 0. Then 𝑤 ≠ 0 𝑤𝑖𝑡ℎ 𝑦 = 𝑤 and we obtain  

‖𝑤‖2 = 〈𝑤, 𝑤〉 = 𝑓(𝑤) ≤ ‖𝑓‖‖𝑤‖. 

Divided by ‖𝑤‖ ≠ 0, the result is ‖𝑤‖ ≤ ‖𝑓‖. ⟶ (1) . 

From the Schwarz inquality we see that  

|𝑓(𝑦)| = |〈𝑦, 𝑤〉| ≤ ‖𝑦‖‖𝑤‖. 

 This implies  
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‖𝑓‖ = sup
‖𝑦‖=1

|〈𝑦, 𝑤〉| ≤ ‖𝑤‖. 

‖𝑓‖ ≤ ‖𝑤‖ ⟶ (2) 

By (1) and (2) we obtain  

‖𝑓‖ = ‖𝑤‖ 

3.2 Sesquilinear Form. 

We showing some definition and theorem in this section. 

Definition (3.2.1) 

If 𝑘 = (ℝ 𝑜𝑟 ℂ) and Y ,Z are vector space on field 𝑘 .Then a sesquilinear form h 

on 𝑌 × 𝑍 be a mapping  

ℎ: 𝑌 × 𝑍 ⟶ 𝑘  

∀ 𝑦, 𝑦1, 𝑦2 ∈ 𝑌 𝑎𝑛𝑑 ∀ 𝑧, 𝑧1 , 𝑧2 ∈ 𝑍 and all scalars 𝛼 , 𝛽,  

1) ℎ(𝑦1 + 𝑦2 , 𝑧) = ℎ(𝑦1, 𝑧) + ℎ(𝑦2, 𝑧) 

2) ℎ(𝑦, 𝑧1 + 𝑧2) = ℎ(𝑦, 𝑧1) + ℎ(𝑦, 𝑧2) 

3) ℎ(𝛼𝑦, 𝑧) = 𝛼ℎ(𝑦, 𝑧) 

4) ℎ(𝑦, 𝛽𝑧) = �̅�ℎ(𝑦, 𝑧). 

So that in the first argument, h is linear, while in the second, it is conjugate 

linear. 

let Y , Z both is real( 𝐾 = ℝ), thus 

ℎ(𝑦, 𝛽𝑧) = 𝛽ℎ(𝑦, 𝑧) 

Definition (3.2.2) 

If Y is a vector space on  the field K .A Hermitian forms h on 𝑌 × 𝑌 is a 

mapping  

ℎ: 𝑌 × 𝑌 ⟶ 𝐾 

for every 𝑦, 𝑧 , 𝑤 ∈ 𝑌 𝑎𝑛𝑑 𝛼 ∈ 𝐾, 
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ℎ(𝑦 + 𝑧, 𝑤) = ℎ(𝑦, 𝑤) + ℎ(𝑧, 𝑤) 

ℎ(𝛼𝑦, 𝑧) = 𝛼ℎ(𝑦, 𝑧) 

ℎ(𝑦, 𝑧) = ℎ(𝑦, 𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅ 

If a sesquilinear form h on Y has the property following, it is said to be 

nondegenerate . 

Let 𝑦 ∈ 𝑌 be  ℎ(𝑦, 𝑧) = 0  ∀𝑧 ∈ 𝑌 , then 𝑦 = 0 ; 

If 𝑧 ∈ 𝑌  is ℎ(𝑦, 𝑧) = 0  ∀𝑦 ∈ 𝑌, then 𝑧 = 0 . 

In particular , forms are Hermitian positive definite sesquilinear.  

It is clear that they are nondegenerate. Nonegative sesquilinear forms are 

sequilinear forms that satisfy the weaker requirement, which is for any 𝑦 ∈

𝑌 , 𝑦 ≠ 0 , ℎ(𝑦, 𝑦) ≥ 0.  

Theorem (3.2.1) [19] 

If the complex vector space X and nonegative sesquilinear form is h on X. 

Then,  

|ℎ(𝑥, 𝑦)|2 ≤ ℎ(𝑥, 𝑥)ℎ(𝑦, 𝑦)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑋. 

Proof  

If ℎ(𝑥, 𝑦) = 0 , the inquality is , true . 

Suppose ℎ(𝑥, 𝑦) ≠ 0 . 

Such that 𝛼 , 𝛽 any arbitrary complex numbers ,we have  

0 ≤ ℎ(𝛼𝑥 + 𝛽𝑦, 𝛼𝑥 + 𝛽𝑦) 

= 𝛼�̅�ℎ(𝑥, 𝑥) + 𝛼�̅�ℎ(𝑥, 𝑦) + �̅�𝛽ℎ(𝑦, 𝑥) + 𝛽�̅�ℎ(𝑦, 𝑦) 

𝑤𝑒 ℎ𝑎𝑣𝑒 

𝛽ℎ(𝑦, 𝑥) = �̅�𝛽ℎ(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ 
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Since ℎ is nonnegative . Now 

If 𝛼 = 𝑡  is real and set  

𝛽 = ℎ(𝑥, 𝑦) |ℎ(𝑥, 𝑦)|⁄ . 

Then,  

𝛽ℎ(𝑦, 𝑦) = |ℎ(𝑥, 𝑦)| and  𝛽�̅� = 1. 

Hence,  

0 ≤ 𝑡2ℎ(𝑥, 𝑥) + 2𝑡|ℎ(𝑥, 𝑦)| + ℎ(𝑦, 𝑦) 

T is an arbitrary real number t . Hence ,the discriminant  

4|ℎ(𝑥, 𝑦)|2 − 4ℎ(𝑥, 𝑥)ℎ(𝑦, 𝑦) ≥ 0, 

Definition (3.2.3) 

If  a Hilbert space is H. If there is a positive constant M such that |ℎ(𝑥, 𝑦)| ≤

𝑀‖𝑥‖‖𝑦‖ for all 𝑥, 𝑦 ∈ 𝐻, then the sesquilinear form h is said to be bounded. 

The norm of h is defined by  

‖ℎ‖ = sup
‖𝑥‖=‖𝑦‖=1

|ℎ(𝑥, 𝑦)| = sup
𝑥∈𝐻,𝑦∈𝐻

𝑥≠0≠𝑦

|ℎ(𝑥, 𝑦)|

‖𝑥‖‖𝑦‖
. 

Examples (3.2.1) 

1) Assuming H is a Hilbert space, part (1) of the theorem (2.2.1)  states that the 

sesquilinear form ℎ: 𝐻 × 𝐻 ⟶ ℂ defined by ℎ(𝑦, 𝑧) = (𝑦, 𝑧) is bounded .                            

‖ℎ‖ = 1 . 𝐼𝑛𝑑𝑒𝑒𝑑 , |ℎ(𝑦, 𝑧)| = |(𝑦, 𝑧)| ≤ ‖𝑦‖‖𝑧‖ ,  

𝑎𝑛𝑑 𝑠𝑜 , ‖ℎ‖ ≤ 1. 𝐹𝑜𝑟 𝑧 = 𝑦 ,  |ℎ(𝑦, 𝑧)| = |(𝑦, 𝑦)| = ‖𝑦‖2 = 1 𝑖𝑓 ‖𝑦‖ = 1. 

2) Let 𝑇: 𝐻 ⟶ 𝐻 be a bounded linear operator ,then 

ℎ(𝑧, 𝑤) = (𝑇𝑧, 𝑤) is a bounded sesquilinear forms with‖ℎ‖ = ‖𝑇‖.                       

Indeed , ∀ 𝑧, 𝑤 ∈ 𝐻 , ‖𝑧‖ = ‖𝑤‖ = 1 

|ℎ(𝑧, 𝑤)| = |(𝑇𝑧, 𝑤)| ≤ ‖𝑇𝑧‖‖𝑤‖ ≤ ‖𝑇‖. 
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Hence,  

‖ℎ‖ ≤ ‖𝑇‖.   

On the other hand ,for 𝑤 = 𝑇𝑧, 

‖ℎ‖ ≥
|ℎ(𝑧, 𝑇𝑧)|

‖𝑧‖‖𝑇𝑧‖
=

‖𝑇𝑧‖2

‖𝑧‖‖𝑇𝑧‖
=

‖𝑇𝑧‖

‖𝑧‖
 , 

     which implies  

‖ℎ‖ ≥ ‖𝑇‖   

Theorem(3.2.2) [13] 

If 𝐻1 , 𝐻2  are Hilbert spaces and  

ℎ: 𝐻1 × 𝐻2 ⟶ 𝐾 

a bounded sesquilinear form. The a representation of h is then 

ℎ(𝑦, 𝑤) = 〈𝑆𝑦, 𝑤〉 

where a linear operator  𝑆: 𝐻1 ⟶ 𝐻2 is bounded. 

𝑆 have norm ‖𝑆‖ = ‖ℎ‖and be uniquely . 

Proof 

If ℎ(𝑦, 𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   is linear in  , we keep 𝑦 fixed.There is 𝑣 so that  

ℎ(𝑦, 𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 〈𝑤, 𝑣〉 

Hence   

ℎ(𝑦, 𝑤) = 〈𝑣, 𝑤〉. 

here 𝑣 ∈ 𝐻2 is unique but , depends on our fixed 𝑦 ∈ 𝐻1. Defines an operator  

𝑆: 𝐻1 ⟶ 𝐻2   given  by  𝑣 = 𝑆𝑦. 

Thus  

ℎ(𝑦, 𝑤) = 〈𝑆𝑦, 𝑤〉 
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 Prove that S is linear.  

〈𝑆(𝛼𝑦1 + 𝛽𝑦2), 𝑤〉 = ℎ(𝛼𝑦1 + 𝛽𝑦2, 𝑤)                                               

= 𝛼ℎ(𝑦1, 𝑤) + 𝛽ℎ(𝑦2, 𝑤) 

= 𝛼〈𝑆𝑦1, 𝑤〉 + 𝛽〈𝑆𝑦2, 𝑤〉 

= 〈𝛼𝑆𝑦1 + 𝛽𝑆𝑦2, 𝑤〉 

for all w in 𝐻2 , so that  

𝑆(𝛼𝑦1 + 𝛽𝑦2) = 𝛼𝑆𝑦1 + 𝛽𝑆𝑦2 

S is bounded. In case 𝑆 = 0 ,we have 

‖ℎ‖ = sup
𝑦≠0
𝑤≠0

|〈𝑆𝑦, 𝑤〉|

‖𝑦‖‖𝑤‖
≥ sup

𝑦≠0
𝑆𝑤≠0

|〈𝑆𝑦, 𝑆𝑦〉|

‖𝑦‖‖𝑆𝑦‖
= sup

𝑦≠0

‖𝑆𝑦‖

‖𝑦‖
= ‖𝑆‖. 

This proves boundedness. Moreover , ‖ℎ‖ ≥ ‖𝑆‖.  

Now  

‖ℎ‖ = sup
𝑦≠0
𝑤≠0

|〈𝑆𝑦, 𝑤〉|

‖𝑦‖‖𝑤‖
≤ sup

𝑦≠0

‖𝑆𝑦‖‖𝑤‖

‖𝑦‖‖𝑤‖
= ‖𝑆‖. 

S is unique. For every 𝑦 ∈ 𝐻1 and 𝑤 ∈ 𝐻2 ,we have the following thanks to the 

linear operator𝑇: 𝐻1 ⟶ 𝐻2 such that  

ℎ(𝑦, 𝑤) = 〈𝑆𝑦, 𝑤〉 = 〈𝑇𝑦, 𝑤〉, 

we see that 〈𝑆𝑦 − 𝑇𝑦, 𝑤〉 = 0. 

so that 𝑆𝑦 = 𝑇𝑦 for all 𝑦 ∈ 𝐻1 . 

Hence 𝑆 = 𝑇 

Corollary (3.2.3)[19] 

Let S is the bounded sesquilinear functional satisfies the condition  

|𝑆(𝑧, 𝑦)| = |𝑆(𝑦, 𝑧)| , 𝑧, 𝑦 ∈ 𝐻, 

 



  70 
 

then   

‖𝑆‖ = sup
𝑧∈𝐻

‖𝑧‖≠0

|𝑆(𝑧, 𝑧)|

‖𝑧‖2
 

Proof: 

It is evident that the supermum in issue is a potential value of M that satisfies  

|𝑆(𝑧, 𝑧)| ≤ 𝑀‖𝑧‖2  

It follows that  

‖𝑆‖ ≤ sup
𝑧∈𝐻

‖𝑧‖≠0

|𝑆(𝑧, 𝑧)|

‖𝑧‖2
; 

but one the other hand, 

 

sup
𝑧∈𝐻

‖𝑧‖≠0

|𝑆(𝑧, 𝑧)|

‖𝑧‖2
≤ sup

𝑧∈𝐻,𝑦∈𝐻
𝑧≠0≠𝑦

|𝑆(𝑧, 𝑦)|

‖𝑧‖‖𝑦‖
= ‖ℎ‖. 

 3.3 Hilbert-Adjoint Operator  

"Bilinear form research on a Hilbert space when H is a Hilbert space, B(H) is 

called a specific Banach algebra exists. A canonical bijection 𝑇 ⟶ 𝑇∗* with 

appealing algebraic features is admissible in the algebra B(H) of bounded linear 

operators on H. Moreover, several features of T can be explored using the self 

adjoint operator 𝑇∗ "[18] 

Definition (3.3.1) 

When  𝐻1, 𝐻2are Hilbert spaces, 𝑇: 𝐻1 ⟶ 𝐻2 is a bounded linear operator. For 

〈𝑇𝑥, 𝑦〉 = 〈𝑥, 𝑇∗𝑦〉  ∀𝑥 ∈ 𝐻1, 𝑦 ∈ 𝐻2 ,the Hilbert adjoint operator T* of T is the 

operator 𝑇∗: 𝐻2 ⟶ 𝐻1. 

Theorem (3.3.1) [13] 

If 𝑇∗ is Hilbert-adjoint operator of T Def (3.3.1) exists , be a bounded linear 

operator and unique with norm  
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‖𝑇∗‖ = ‖𝑇‖. 

 

Proof  

The formula  

𝐵(𝑦, 𝑥) = (𝑦, 𝑇𝑥) 

since the inner product of sesquilinear and T is linear, defines a sesquilinear form 

on 𝐻2 × 𝐻1. The formula's conjugate linearity is seen from 

𝐵(𝑦, 𝛼𝑥1 + 𝛽𝑥2) = 〈𝑦, 𝑇(𝛼𝑥1 + 𝛽𝑥2)〉 

                             = 〈𝑦, 𝛼𝑇𝑥1 + 𝛽𝑇𝑥2〉 

                                    = �̅�〈𝑦, 𝑇𝑥1〉 + �̅�〈𝑦, 𝑇𝑥2〉 

                            = �̅�ℎ(𝑦, 𝑥1) + �̅�ℎ(𝑦, 𝑥2). 

B is bounded .  

|𝐵(𝑦, 𝑥)| = |〈𝑦, 𝑇𝑥〉| ≤ ‖𝑦‖‖𝑇𝑥‖ ≤ ‖𝑇‖‖𝑥‖‖𝑦‖. 

Implies  

‖𝐵‖ ≤ ‖𝑇‖. 

we obtain ‖𝐵‖ ≥ ‖𝑇‖ from . 

‖𝐵‖ = sup
𝑥≠0
𝑦≠0

|〈𝑦, 𝑇𝑥〉|

‖𝑦‖‖𝑥‖
≥ sup

𝑥≠0
𝑇𝑥≠0

|〈𝑇𝑥, 𝑇𝑥〉|

‖𝑇𝑥‖‖𝑥‖
= ‖𝑇‖. 

‖𝐵‖ = ‖𝑇‖. 

By Theorem(3.2.2) ,we obtain  

𝐵(𝑦, 𝑥) = 〈𝑇∗𝑦, 𝑥〉, 

and since 𝑇∗: 𝐻2 ⟶ 𝐻1 is a bounded linear operator that can a uniquely be 

computed once and whose norm is 

‖𝑇∗‖ = ‖𝐵‖ = ‖𝑇‖. 
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Thus 

‖𝑇∗‖ = ‖𝑇‖. 

Also 〈𝑦, 𝑇𝑥〉 = 〈𝑇∗𝑦, 𝑥〉 by comparing 𝐵(𝑦, 𝑥) = 〈𝑦, 𝑇𝑥〉 and 𝐵(𝑦, 𝑥) = 〈𝑇∗𝑦, 𝑥〉,  

so that we have  

〈𝑇𝑥, 𝑦〉 = 〈𝑥, 𝑇∗𝑦〉 

If taking conjugates , and can be see that 𝑇∗ is the operator. 

Remarks .[13] 

If T is a linear operator with bounds then ,T = 0 iff , 〈𝑇𝑥, 𝑦〉 = 0  ∀ 𝑥, 𝑦 ∈ 𝐻. 𝑇 =

0 means 𝑇𝑥 = 0 for every 𝑥 ∈ 𝐻 and  thus 〈𝑇𝑥, 𝑦〉 = 〈0, 𝑦〉 = 0 . Now if , 

〈𝑇𝑥, 𝑦〉 = 0 for all 𝑥, 𝑦 ∈ 𝐻 implies 𝑇𝑥 = 0  ∀ 𝑥 ∈ 𝐻, which ,can be write T = 0 . 

Now showing some general properties of Hilbert adjoint operators. 

Theorem (3.3.2)[19] 

If 𝐻1 , 𝐻2 are Hilbert spaces , 𝛼 any scalar and  𝑆: 𝐻1 ⟶ 𝐻2 and 𝑇: 𝐻1 ⟶ 𝐻2 are 

a bounded linear operators. Then  

1) 〈𝐴∗𝑦, 𝑧〉 = 〈𝑤, 𝐴𝑧〉            (𝑧 ∈ 𝐻1 , 𝑤 ∈ 𝐻2) 

2) (𝑆 + 𝐴)∗ = 𝑆∗ + 𝐴∗ 

3) (𝛼𝐴)∗ = �̅�𝐴∗ 

4) (𝐴∗)∗ = 𝐴 

5) ‖𝐴∗𝐴‖ = ‖𝐴𝐴∗‖ = ‖𝐴‖2 

6) 𝐴∗𝐴 = 0 𝑖𝑓𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴 = 0 

7) (𝑆𝐴)∗ = 𝐴∗𝑆∗             (𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝐻2 = 𝐻1). 

Proof  

1) We have 〈𝐴∗𝑤, 𝑧〉 = 〈𝑧, 𝐴∗𝑤〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑡ℎ𝑒𝑛 

〈𝑧, 𝐴∗𝑤〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 〈𝐴𝑧, 𝑤〉̅̅ ̅̅ ̅̅ ̅̅ ̅ = 〈𝑤, 𝐴𝑧〉. 

2) For all z and w , 

〈𝑧, (𝑆 + 𝐴)∗𝑤〉 = 〈(𝑆 + 𝐴)𝑧, 𝑤〉            

                                 = 〈𝑆𝑧, 𝑤〉 + 〈𝐴𝑧, 𝑤〉             
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                      = 〈𝑧, 𝑆∗𝑤〉 + 〈𝑧, 𝐴∗𝑤〉 

               = 〈𝑧, (𝑆∗ + 𝐴∗)𝑤〉. 

Hence (𝑆 + 𝐴)∗𝑤 = (𝑆∗ + 𝐴∗)𝑤 for all w which is (𝑆 + 𝐴)∗ = (𝑆∗ + 𝐴∗) 

3) Now 

〈(𝛼𝐴)∗𝑤, 𝑧〉 = 〈𝑤, (𝛼𝐴)𝑥〉                     

 = 〈𝑤, 𝛼(𝐴𝑧)〉  

= �̅�〈𝑤, 𝐴𝑧〉      

= �̅�〈𝐴∗𝑤, 𝑧〉    

= 〈�̅�𝐴∗𝑤, 𝑧〉. 

And this hold for all 𝑤 ∈ 𝐻2 and obtained (𝛼𝐴)∗ = �̅�𝐴∗. 

4) For all 𝑧 ∈ 𝐻1 and 𝑧 ∈ 𝐻2 we have  

〈(𝐴∗)∗𝑧, 𝑤〉 = 〈𝑧, 𝐴∗𝑤〉 = 〈𝐴𝑧, 𝑤〉 

This implies that  

〈((𝐴∗)∗ − 𝐴)𝑧, 𝑤〉 = 0    for all 𝑤 ∈ 𝐻2, 

and  

(𝐴∗)∗ − 𝐴 = 0. 

Hence  

(𝐴∗)∗ = 𝐴. 

5) We see that 𝐴∗𝐴: 𝐻1 ⟶ 𝐻1, but 𝐴𝐴∗: 𝐻2 ⟶ 𝐻2  

By the Schwarz inequality, 

‖𝐴𝑧‖2 = 〈𝐴, 𝐴𝑧〉 = 〈𝐴∗𝐴𝑧, 𝑧〉 

≤ ‖𝐴∗𝐴𝑧‖‖𝑧‖ ≤ ‖𝐴∗𝐴‖‖𝑧‖2. 

Taking the supremum over all z of norm1, hence 

‖𝐴2‖ ≤ ‖𝐴∗𝐴‖. 
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We thus have  

‖𝐴2‖ ≤ ‖𝐴∗𝐴‖ ≤ ‖𝐴∗‖‖𝐴‖ = ‖𝐴‖2. 

Hence                                  ‖𝐴∗𝐴‖ = ‖𝐴‖2 

Replacing  A by 𝐴∗ , we have  

‖𝐴∗∗𝐴∗‖ = ‖𝐴∗‖2 = ‖𝐴‖2. 

Here    𝐴∗𝐴 = 𝐴  so that  

‖𝐴∗𝐴‖ = ‖𝐴𝐴∗‖ = ‖𝐴‖2. 

6) If 𝐴∗𝐴 = 0 , then  ‖𝐴‖2 = ‖𝐴𝐴∗‖ = 0 this implies that 𝐴 = 0, 

but if  𝐴 = 0 , then ‖𝐴𝐴‖ = ‖𝐴‖2 = 0 this implies that 𝐴∗𝐴 = 0. 

7) 〈𝑧, (𝑆𝐴)∗𝑤〉 = 〈(𝑆𝐴)𝑧, 𝑤〉 = 〈𝐴𝑧, 𝑆∗𝑤〉 = 〈𝑧, 𝐴∗𝑆∗𝑤〉. 

Hence (𝑆𝐴)∗𝑤 = 𝐴∗𝑆∗𝑤 for all 𝑤 ∈ 𝐻1 = 𝐻2. 

Definition (3.3.2) 

If A is algebra over ℂ . An involution is a mapping 𝑇 ⟶ 𝑇∗of A into itself that 

holds,  ∀ 𝑇, 𝑆 ∈ 𝐴 and every 𝛼 ∈ ℂ .  

𝑇∗∗ = 𝑇 , (𝑇 + 𝑆)∗ = 𝑇∗ + 𝑆∗, (𝛼𝑇)∗ = �̅�𝑇∗ , (𝑇𝑆)∗ = 𝑆∗𝑇∗. 

An algebra with an involution is called an 𝐚∗ algebra space. A 𝒏𝒐𝒓𝒎𝒆𝒅∗ algebra 

is a normed algebra with an involution.  

A 𝐶∗-algebra is a Banch algebra A that has an involution satisfying ‖𝑇∗𝑇‖ =

‖𝑇‖2 . 

‖𝑇‖2 = ‖𝑇∗𝑇‖ ≤ ‖T∗‖‖T‖ , 

which implies ‖T‖ ≤ ‖T∗‖ provided 𝑇 ≠ 0 . 

Replacing T by 𝑇∗and by using 𝑇∗∗ = 𝑇 , we obtain ‖T∗‖ ≤ ‖T‖ .Thus , ‖T‖ =

‖T∗‖  for 𝑇 ∈ 𝐴 , since the equality is trivally true when T=0 . 

Remak[15]. 

The true analogues of complex numbers are normed operators ; Note that  
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𝑇 =
𝑇 + 𝑇∗

2
+ 𝑖

𝑇 − 𝑇∗

2𝑖
 , 

where 
𝑇+𝑇∗

2
 and 

𝑇−𝑇∗

2𝑖
 are self-adjoint and   

𝑇∗ =
𝑇 + 𝑇∗

2
− 𝑖

𝑇 − 𝑇∗

2𝑖
. 

Real and imaginary parts of T are the operators 
𝑇+𝑇∗

2
 and 

𝑇−𝑇∗

2𝑖
. 

Next we give some examples.  

Examples (3.3.1)  

1) Let is ℂ with conjugacy ℂ 𝑁 has an involution  

(𝑍1, … , 𝑍𝑁)∗ = (𝑍1
̅̅ ̅, … , 𝑍𝑁

̅̅̅̅ ) 

This example extends to 𝑙∞ . 

2) 𝐶[0,1] with conjugacy  𝑓(̅𝑧) = 𝑓(𝑧)̅̅ ̅̅ ̅̅  . 

3) Define T 𝑇: ℂ 𝑛 ⟶ ℂ 𝑛 by setting(𝑇𝑥)𝑖 = ∑ 𝛼𝑖𝑗𝑥𝑗
𝑛
𝑗=1  , if 𝐻 = ℂ 𝑛 the 

Hilbert space of finite dimension n, and {𝑒1, 𝑒2, … , 𝑒𝑛}be the common 

orthonormal basis for H. 

T is obviously linear and bounded as a result. Given that the inner product inℂ 𝑛 is 

〈𝑥, 𝑦〉 = ∑ 𝑥𝑖𝑦�̅�
𝑛
𝑖=1  

〈𝑇𝑥, 𝑦〉 = ∑(𝑇𝑥)𝑖𝑦�̅�

𝑛

𝑖=1

                   

           = ∑ (∑ 𝛼𝑖𝑗𝑥𝑗

𝑛

𝑗=1
)

𝑛

𝑖=1

𝑦�̅� 

= ∑ 𝑥𝑗

𝑛

𝑗=1
∑ 𝛼𝑖𝑗̅̅ ̅̅

𝑛

𝑖=1

𝑦𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

    = 〈𝑥, 𝑇∗𝑦〉,                          

where (𝑇∗𝑦)𝑗 = ∑ 𝛼𝑖𝑗̅̅ ̅̅𝑛
𝑖=1 𝑦𝑖 . The adjoint of T.  
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   3.4 Special Classes of Operators. 

"The classes of bounded linear operators of significant practical value have been 

investigated in this section using the Hilbert adjoint operator, which is defined as 

follows". [19]. 

Definition (3.4.1) 

Let T a bounded linear operator on a Hilbert space H, 𝑇: 𝐻 ⟶ 𝐻 is said to be  

1) T is Hermitian or self – adjoint if 𝑇∗ = 𝑇, 

2) If T is bijective and 𝑇∗ = 𝑇−1, then T is unitary  

3) Let  𝑇∗𝑇 = 𝑇𝑇∗ then T be normal 

Next we give some examples.  

Examples (3.4.1) 

1) Since self – adjoint and unit elements are normal. 

2) Any 𝑧 ∈ ℂ is normal ; it is self – adjoint only when 𝑧 ∈ ℝ it is unitary 

when |𝑧| = 1. 

3) The operator 𝑇∗defined by 𝑇∗𝑥 = �̅�𝑥 , 𝑥 ∈ 𝐻  ,is the adjoint of the 

operator 𝑇 ∈ 𝐵(𝐻) such that 𝑇𝑥 = 𝛼𝑥 , 𝑥 ∈ 𝐻 and 𝛼 ∈ ℂ , Indeed , for 

𝑥, 𝑦 ∈ 𝐻 , 〈𝑥, 𝑇∗𝑦〉 = 〈𝑇𝑥, 𝑦〉 = 〈𝛼𝑥 , 𝑦〉 = 〈𝑥, �̅�𝑦〉 . 

Thus 〈𝑥, 〈𝑇∗ − �̅�𝐼〉𝑦〉 = 0 consequently , 𝑇∗ = �̅�𝐼.  

4) Let  S ,T are self – adjoint , then so are 𝑆 + 𝑇 , 𝛼𝑇(𝛼 ∈ ℝ) , 𝑝(𝑇) for any 

real polynomial p and 𝑇−1 if it exists but ST is self –adjoint iff ST=TS. 

Theorem (3.4.1)[13] 

If the operator 𝑇: 𝐻 ⟶ 𝐻 is a bounded on H . Then  

1) Let T be self – adjoint ,then 〈𝑇𝑥, 𝑥〉 ∀𝑥 ∈ 𝐻  be real. 

2) Let H be complex , 〈𝑇𝑥, 𝑥〉 ∀𝑥 ∈ 𝐻  is real , then T is self – adjoint. 

 

Proof  

1) Let T be self – adjoint , hence, 

〈𝑇𝑥, 𝑥〉̅̅ ̅̅ ̅̅ ̅̅ ̅ = 〈𝑥, 𝑇𝑥〉 = 〈𝑇𝑥, 𝑥〉 ∀𝑥. 

Hence 〈𝑇𝑥, 𝑥〉 is real since it equals its complex conjugate. 
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2) Let 〈𝑇𝑥, 𝑥〉 be real for all x , then  

〈𝑇𝑥, 𝑥〉 = 〈𝑇𝑥, 𝑥〉̅̅ ̅̅ ̅̅ ̅̅ ̅ = 〈𝑥, 𝑇∗𝑥〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 〈𝑇∗𝑥, 𝑥〉. 

Hence  

0 = 〈𝑇𝑥, 𝑥〉 − 〈𝑇∗𝑥, 𝑥〉 = 〈(𝑇 − 𝑇∗)𝑥, 𝑥〉 

and 𝑇 − 𝑇∗ = 0 since H is complex. Then 𝑇 = 𝑇∗. 

Remark[15].  

1) The previous proposition Part (2) is false if it only supposed that it is a real 

Hilbert space . The example ; if  

𝑇 = [
0 1

−1 0
]  on ℝ2, 

then 〈𝑇𝑥, 𝑥〉 = 0 ∀𝑥 ∈ ℝ2.  

However , 𝑇∗ = [
0 −1
1 0

] ≠ [
0 1

−1 0
] = 𝑇. 

2) Let  𝑇 ∈ 𝐵(𝐻) , then 𝑇∗𝑇 and 𝑇 + 𝑇∗ are self –adjoint . 

Theorem (3.4.2)[19] 

When two bounded self-adjoint linear operators on a Hilbert space are combined 

to form S and T, H is only self-adjoint if and only if the operators commute, 

resulting in 𝑆𝑇 = 𝑇𝑆.  

Proof  

If ST is self adjoint , then (𝑆𝑇)∗ = 𝑆𝑇  𝑏𝑢𝑡  (𝑆𝑇)∗ = 𝑇∗𝑆∗ = 𝑇𝑆 . 

 Now if  𝑆𝑇 = 𝑇𝑆,then  

(𝑆𝑇)∗ = 𝑇∗𝑆∗ = 𝑇𝑆 = 𝑆𝑇. 

This implies ST is self – adjoint. 

Theorem (3.4.3)[13] 

 If (𝑇𝑛) is a series of bounded self-adjoint linear operators 𝑇𝑛: 𝐻 ⟶ 𝐻 on a Hilbert 

space H, then the limit operator T is a bounded self-adjoint linear operator on H if 

(𝑇𝑛)converges, such that , 𝑇𝑛 ⟶ 𝑇, so that, ‖𝑇𝑛 − 𝑇‖ ⟶ 0 , where ‖∙‖ is the norm 

on the space 𝐵(𝐻, 𝐻).  
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Proof  

 By follows ‖𝑇 − 𝑇∗‖ = 0. 

‖𝑇𝑛
∗ − 𝑇∗‖ = ‖(𝑇𝑛 − 𝑇)∗‖ = ‖𝑇𝑛 − 𝑇‖ 

and obtain by the theorem (2.2.1) part (2) in 𝐵(𝐻, 𝐻)  

‖𝑇 − 𝑇∗‖ ≤ ‖𝑇 − 𝑇𝑛‖ + ‖𝑇𝑛 − 𝑇𝑛
∗‖+‖𝑇𝑛

∗ − 𝑇∗‖ 

= ‖𝑇 − 𝑇𝑛‖ + 0 + ‖𝑇𝑛 − 𝑇‖ 

= 2‖𝑇𝑛 − 𝑇‖ ⟶ 0      (𝑛 ⟶ ∞). 

Hence ‖𝑇 − 𝑇∗‖ = 0 and  𝑇∗ = 𝑇 . 

Theorem (3.4.4)[15] 

If the operators 𝑈: 𝐻 ⟶ 𝐻 and 𝑊: 𝐻 ⟶ 𝐻 by  unitary . Then  𝑈 , 𝑊 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 ⟹

𝑈𝑊 , 𝑈−1  unitary . 

Unitary elements have unit norm , ‖𝑈‖ = 1 , provided 𝐻 ≠ {0} . 

Proof  

If 𝑈𝑛 are unitary and 𝑈𝑛 ⟶ 𝑇 , then by continuity the involution , 𝑈𝑛
∗ ⟶ 𝑇∗ since 

𝑈𝑛
∗𝑈𝑛 = 1 = 𝑈𝑛𝑈𝑛

∗ become  𝑇∗𝑇 = 1𝑇𝑇∗ in the limit , that is 𝑇−1 = 𝑇∗ for any 

𝑈, 𝑊 ∈ 𝑈(𝑥) , 𝑈𝑊  and 𝑈∗ = (𝑈−1) are also unitary  

(𝑈𝑊)∗ = 𝑊∗𝑈∗ = 𝑊−1𝑈−1 = (𝑈𝑊)−1 

𝑈∗∗ = U = (𝑈−1)−1 = (𝑈∗)−1 

Finally                                      ‖𝑈‖2 = ‖𝑈∗𝑈‖ = ‖1‖ = 1. 

 

Lemma (3.4.5)[19] 

If  H is a complex Hilbert space , 𝑇: 𝐻 ⟶ 𝐻 be linear operator on H and a 

bounded such that 〈𝑇𝑤, 𝑤〉 ∀𝑤 ∈ 𝐻 , then T=0. 

 

 



  79 
 

Proof  

For  𝑤, 𝑦 ∈ 𝐻 ,  

〈𝑇𝑤, 𝑦〉 =
1

4
{〈𝑇(𝑤 + 𝑦), 𝑤 + 𝑦〉 − 〈𝑇(𝑤 − 𝑦), 𝑤 − 𝑦〉 + 𝑖〈𝑇(𝑤 + 𝑖𝑦), 𝑤 + 𝑖𝑦〉

− 𝑖(𝑇(𝑤 − 𝑖𝑦), 𝑤 − 𝑖𝑦)}. 

Since  〈𝑇𝑤, 𝑤〉 = 0 for all  𝑤, 𝑦 ∈ 𝐻 , it follows that 〈𝑇𝑤, 𝑦〉 = 0 ∀ 𝑤, 𝑦 ∈ 𝐻 

.setting 𝑦 = 𝑇𝑤,  

Thus ‖𝑇𝑤‖ = 0 for every  𝑤 ∈ 𝐻, so  𝑇𝑤 = 0 ∀𝑥 ∈ 𝐻. consequently, T=0. 

Definition (3.4.2) 

T is positive semidefinite, let 𝑇 ∈ 𝐵(𝐻)be such that 𝑇∗ = 𝑇  if for each ∈ 𝐻 , 

〈𝑇𝑥, 𝑥〉 ≥ 0. If T is positive definite and 〈𝑇𝑥, 𝑥〉 > 0 for every nonzero 𝑥 ∈ 𝐻. 

They are often referred to as strictly positive and positive operators.  

Theorem (3.4.6)[7]  

If , 𝑇 ∈ 𝐵(𝐻) , when a complex Hilbert space is H , if 𝑆𝑇 = 𝑇𝑆 then their product 

𝑆𝑇 is positive such that 𝑆 ≥ 0 , 𝑇 ≥ 0 . 

Proof   

 suppose 𝑆𝑇 = 𝑇𝑆 and we show that 〈𝑆𝑇𝑥, 𝑥〉 ≥ 0 for all 𝑥 ∈ 𝐻 . Let S=0 , the 

inequality holds. If ≠ 0 . Set 𝑆1 = 𝑆 ‖𝑆‖⁄  , 𝑆2 = 𝑆1 − 𝑆1
2, … , 𝑆𝑛+1 = 𝑆𝑛 −

𝑆𝑛
2 , …, for each 𝑆𝑖 be self –adjoint . To prove , any 𝑖 = 1,2, …, 0 ≤ 𝑆𝑖 ≤ 𝐼  .For 

𝑖 = 1 and 𝑥 ∈ 𝐻, 

〈𝑆1𝑥, 𝑥〉 = 〈(𝑆 ‖𝑆‖⁄ )𝑥, 𝑥〉 = 〈𝑆𝑥, 𝑥〉 ‖𝑆‖⁄ ≤ ‖Sx‖‖x‖ ‖𝑆‖ ≤ ‖x‖2 = 〈x, x〉⁄  ; 

So , 〈(𝐼 − 𝑆1)𝑥, 𝑥〉 ≥ 0 .  

suppose that  0 ≤ 𝑆𝑘 ≤ 𝐼 . Then 〈𝑆𝑘
2(𝐼 − 𝑆𝑘)𝑥, 𝑥〉 = 〈(𝐼 − 𝑆𝑘)𝑆𝑘𝑥, 𝑆𝑘𝑥〉 ≥ 0 ,   

that is , 

𝑆𝑘
2(𝐼 − 𝑆𝑘) ≥ 0 . similarly , it can be shown that 𝑆𝑘(𝐼 − 𝑆𝑘)2 ≥ 0 . Consequently, 

𝑆𝑘+1 = 𝑆𝑘
2(𝐼 − 𝑆𝑘) + 𝑆𝑘(𝐼 − 𝑆𝑘)2 ≥ 0 and 𝐼 − 𝑆𝑘+1 = (𝐼 − 𝑆𝑘) + 𝑆𝑘

2 ≥ 0 by 

Thus 𝑆𝑘
2 ≥ 0 where 𝑆𝑘 ≥ 0 . This completes the argument when 0 ≤ 𝑆𝑘 ≤ 𝐼 . 
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To observe that. Now consider the general case 

𝑆1 = 𝑆1
2 + 𝑆2 = 𝑆1

2 + 𝑆2
2 + 𝑆3 = ⋯ = 𝑆1

2 + 𝑆2
2 + ⋯ + 𝑆𝑛

2 + 𝑆𝑛+1. 

Since 𝑆𝑛+1 ≥ 0 , this implies  

𝑆1
2 + 𝑆2

2 + ⋯ + 𝑆𝑛
2 = 𝑆1 − 𝑆𝑛+1 ≤ 𝑆1 . 

By the definition of ≤ and  𝑆𝑖 = 𝑆𝑖
∗
 , that is  

∑‖𝑆𝑖𝑥‖2 = ∑〈𝑆𝑖𝑥, 𝑆𝑖𝑥〉

𝑛

𝑖=1

𝑛

𝑖=1

= ∑〈𝑆𝑖
2𝑥, 𝑥〉

𝑛

𝑖=1

 

≤ 〈𝑆1𝑥, 𝑥〉.       

Since n is arbitrary , the infinite series ∑ ‖𝑆𝑖𝑥‖2∞
𝑖=1  converges , which implies 

‖𝑆𝑖𝑥‖ ⟶ 0 

and hence 𝑆𝑖𝑥 ⟶ 0. 

Since  

〈∑ 𝑆𝑖
2𝑥, 𝑥

𝑛

𝑖=1

〉 = (𝑆1 − 𝑆𝑛+1)𝑥 ⟶ 𝑆1𝑥      𝑎𝑠 𝑛 ⟶ ∞. 

Since  the sums and products of 𝑆1 = ‖𝑆‖−1𝑆and S and T commute, 𝑆𝑖 commutes 

with T.  

〈𝑆𝑇𝑥, 𝑥〉 = ‖𝑆‖〈𝑆1𝑇𝑥, 𝑥〉 

= ‖𝑆‖〈𝑇𝑆1𝑥, 𝑥〉 

= ‖𝑆‖ 〈𝑇 lim
𝑛

∑ 𝑆𝑖
2

𝑛

𝑖=1

𝑥 , 𝑥〉 

= ‖𝑆‖ lim
𝑛

∑〈𝑇𝑆𝑖
2𝑥, 𝑥〉

𝑛

𝑖=1

      

= ‖𝑆‖ lim
𝑛

∑〈𝑇𝑆𝑖𝑥, 𝑆𝑖𝑥〉

𝑛

𝑖=1

 

≥ 0, 
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Using 𝑆 = ‖𝑆‖𝑆1 ,and 𝑇 ≥ 0 . Thus , 〈𝑆𝑇𝑥, 𝑥〉 ≥ 0  for all 𝑥 ∈ 𝐻 

Definition (3.4.3) 

If  linear operator 𝑇𝑛: 𝐻 ⟶ 𝐻 is bounded on a Hilbert  space H , 𝑛 = 1,2, … and 

{𝑇𝑛}𝑛≥1 is a sequence of bounded linear self – adjoint operators defined in a 

Hilbert space H,  

the sequence {𝑇𝑛}𝑛≥1 is called increasing .  

[resp . decreasing] if 𝑇1 ≤ 𝑇2 ≤ ⋯  [resp . 𝑇1 ≥ 𝑇2 ≥ ⋯ ]. 

Theorem (3.4.7) [19] 

Let 𝑇 ∈ 𝐵(𝐻) and ≥ 0 . Then , there is a unique 𝑉 ∈ 𝐵(𝐻) with 𝑉 ≥ 0 and 𝑉2 =

𝑇 .  

Furthermore, every bounded operator that commutes with T also commutes with 

V. 

Proof   

Let = 0 , then take  𝑉 = 0.we suppose, ‖𝑇‖ ≤ 1 . for any positive T and 𝑧 ∈ 𝐻,  

   〈𝑇𝑧, 𝑧〉 ≤ ‖𝑇𝑧‖‖𝑧‖ ≤ ‖𝑇‖‖𝑧‖2 = ‖𝑇‖〈𝑧, 𝑧〉 , 

Which implies  

〈𝑇 ‖𝑇‖⁄ 𝑧, 𝑧〉 ≤ 〈𝑧, 𝑧〉 , 𝑧 ∈ 𝐻                          

and therefore , 𝑇 ‖𝑇‖⁄ ≤ 𝐼 . Hence, we may claim that there exists a positive 

operator V so that  𝑉2 = 𝑇 ‖𝑇‖⁄  . 

Conclusion that‖𝑇‖
1

2𝑉 is a positive square root of T . 

And 𝐼 − 𝑇 is self – adjoint ,  

‖𝐼 − 𝑇‖ = sup
‖𝑧‖≠0

|〈(𝐼 − 𝑇)𝑧, 𝑧〉|

‖𝑧‖2
= sup

‖𝑧‖=1
|〈(𝐼 − 𝑇)𝑧, 𝑧〉| ≤ 1. 

Since the series  

𝐼 + 𝛼1(𝐼 − 𝑇) + 𝛼2(𝐼 − 𝑇)2 + ⋯    , 

converges in norm to an operator V We can be obtain that 𝑉2 = 𝐼 − (𝐼 − 𝑇) = 𝑇 . 
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Furthermore ,since 0 ≤ (𝐼 − 𝑇) ≤ 𝐼 , we have 

0 ≤ 〈(𝐼 − 𝑇)𝑛𝑧, 𝑧〉 ≤ 1, 

for all 𝑧 ∈ 𝐻 with ‖𝑧‖ = 1 . Thus , 

    〈𝑉𝑧, 𝑧〉 = 1 + ∑ 𝛼𝑛
∞
𝑛=1 〈(𝐼 − 𝑇)𝑛𝑧, 𝑧〉         

                ≥ 1 + ∑ 𝛼𝑛
∞
𝑛=1   , using  𝛼𝑛 < 0  

= 0    , for all 𝑛 ≥ 1  

As the value of the series 1 + ∑ 𝛼𝑛𝑆𝑛∞
𝑛=1   at 𝑠 = 1 ,which is  1 + ∑ 𝛼𝑛

∞
𝑛=1  ,is zero, 

the sum of the series is also zero.hence , 𝑉 ≥ 0  .  

We do not need the restriction that ‖𝑇‖ ≤ 1. If 𝑆 ∈ 𝐵(𝐻) is such that 𝑇 = 𝑇𝑆 .  

Then , 𝑆(𝐼 − 𝑇)𝑛 = (𝐼 − 𝑇)𝑛𝑆  and consequently ,  𝑆𝑉 = 𝑉𝑆 . To show that S is 

unique. 

assume there is �̀� ,with �̀� ≥ 𝑂 and  (�̀�)
2

= 𝑇 . Then  

�̀�𝑇 =  (�̀�)
3

= 𝑇�̀�  , 

T commutes with V, thus �̀�  commutes with T. Also , (𝑉 − �̀�)𝑉(𝑉 − �̀�) +

(𝑉 − �̀�)�̀�(𝑉 − �̀�) = (𝑉2 − �̀�2)(𝑉 − �̀�) = 𝑂. 

Due to the fact that both terms on the left are positive and equal to zero, their 

difference (𝑉 − �̀�)
3

= 𝑂. So 𝑉 − �̀�  is hence self – adjoint , 

It hence  

‖(𝑉 − �̀�)‖
2

= ‖(𝑉 − �̀�)(𝑉 − �̀�)‖ = ‖(𝑉 − �̀�)
2

‖. 

And  

‖(𝑉 − �̀�)‖
4

= ‖(𝑉 − �̀�)
2

‖
2

= ‖(𝑉 − �̀�)
4

‖ , so  𝑉 − �̀� = 𝑂. 

Example(3.4.2)  

In 𝑙2[0,1] , the multiplication operator  

(𝑇𝑥)(𝑡) = 𝑡𝑥(𝑡)   , 0 < 𝑡 < 1  , 𝑥 ∈ 𝑙2[0,1] 
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has the square root S , where  

(𝑆𝑥)(𝑡) = √𝑡𝑥(𝑡)  ,  0 < 𝑡 < 1   , 𝑥 ∈ 𝑙2[0,1]. 

Theorem (3.4.8)[19] 

If 𝑇 ∈ 𝐵(𝐻) is self – adjoint and ∈ ℕ , then  ‖𝑇𝑛‖ = ‖𝑇‖𝑛. 

 

Proof  

Let 𝑇 = 0. So may take ‖𝑇‖𝑚 > 0  ∀𝑚 ∈ ℕ. 

If 𝑛 = 1 is trival.For = 2 , we obtain  

‖𝑇2‖ = ‖𝑇∗𝑇‖ = ‖𝑇‖2. 

This says that, when k=1 ,the equality ‖𝑇2𝑘
‖ = ‖𝑇‖2𝑘

 holds. suppose this for 

some 𝑘 ∈ ℕ. Then , 

‖𝑇2𝑘+1‖ = ‖(𝑇2𝑘
)

2

‖ = ‖(𝑇2𝑘
)

∗

(𝑇2𝑘
)‖ = ‖𝑇2𝑘

‖
2

= (‖𝑇‖2𝑘
)

2

= ‖𝑇‖2𝑘+1
. 

If follows by induction that  

‖𝑇2𝑘
‖ = ‖𝑇‖2𝑘

           for all 𝑘 ∈ ℕ. 

Now consider an arbitrary 𝑛 ∈ ℕ. Choose 𝑘 ∈ ℕsuch that < 2𝑘 , and put 𝑚 =

2𝑘 − 𝑛.Then , 0 ≤ ‖𝑇𝑚‖ ≤ ‖𝑇‖𝑚 ≠ 0 and 0 ≤ ‖𝑇𝑛‖ ≤ ‖𝑇‖𝑛 . 

If it were to be the case that ‖𝑇𝑛‖ < ‖𝑇‖𝑛  ,then it follow that  

‖𝑇2𝑘
‖ = ‖𝑇𝑛+𝑚‖ ≤ ‖𝑇𝑛‖ ∙ ‖𝑇𝑚‖ < ‖𝑇‖𝑛‖𝑇‖𝑚 = ‖𝑇‖𝑛+𝑚 = ‖𝑇‖2𝑘

, 

Contardicting what  was proved earlier by induction. Thus, ‖𝑇𝑛‖ = ‖𝑇‖𝑛 . 
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Conclusion and Recommendation  

It has been concluded that the transforming of linear independent sets into 

orthogonal sets, and transforming these sets into orthonormal sets in inner product 

spaces by using Gram – Schmidt process. 

It can be determined the linear combination for the elements of orthonormal 

sequences by using Bessel inequality. 

Riesz`s theorem shows representing bounded linear functional on Hilbert spaces 

by inner product . 

The theorem (3.4.3) illustrates that the limit of sequence of bounded self – adjoint 

operators on such is self – adjoint bounded linear operator. 

As the researcher has recommended on the necessity to continue searching in such 

topic in order to get the whole coverage of all sides of Hilbert space, like studying 

compacts and the spectrum of Hilbert spaces.  
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 الملخص

 

ساسية المتعلقة بفضاءات الضرب الداخلي ومنها التعامد دراسة بعض المفاهيم الأ تفي هذا البحث تم

 بعد ذلكثم   كبيرا  في بناء فضاءات الضرب الداخلي ، ا  دور ان يلعبانذلال المباشر والجمع والتعامد الناظمي

لمبرهنات الأساسية التطرق إلى بعض ا ي ذلك تمتعريف فضاءات هيلبرت وإعطاء أمثلة بسيطة عليها وف تم

شميدت ، مثل متباينة بيسل ومبرهنة جرام  الضرب الداخلي وفضاءات هيلبرت فضاءاتقة  بذات العلا

المرافقة  و تأثيراتها على فضاءات  تقديم خصائص المؤثرات الخطية والداليات الخطية والمؤثرات موكذلك ت

فضاءات هيلبرت  ووصلنا إلى أن الداليات الخطية على التي تلعب دورا هاما في التحليل الدالي هيلبيرت 

.ماهي إلا الضرب الداخلي  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  86 
 

Bibliography 

 المراجع العربية:

 2019،الطبعة الاولى  جامعة مصراتة ،الجزء الأول، ،تحليل الداليال ،رمضان إجهيمة[1]

 (.2006) جامعة دمشق، ،قاتهالمدخل إلي التحليل الدالي وتطبي خضر الأحمد،[2]

Foreign References: 

[3 ] Akhiezer, N and  Glazman, M. Theory of Linear Operators in Hilbert Space , 

Courier Corporation ,(1993). 

 [4] Alabiso ,C and  Weiss, I. A Primer on Hilbert space Theory, Springer & 

International Publishing Switzerland, (2015). 

[5] Avendano, R and Rosenthal, P. An Introduction to Operators on the Hardy - 

Hilbert space, Springer ,(2007). 

[6] Berberian, S. Introduction to Hilbert Space, AMS Chelsea Publishing, 

American Mathematical Society, second Edition, (1976). 

[7] Bhatia, R. Notes on Functional Analysis, Hindustan Book Agency,(2009) . 

[8] Bierens, J. Hilbert space Theory and its Applications to Semi-Nonparametric 

Modeling and Inference, Pennsylvania State University,( 2012). 

[9] Conway, J. A Course in Functional Analysis, Springer, Verlag, New York, 

(1985). 

 [10] Devito, C . Functional Analysis and Linear Operator Theory, Addison & 

Wesley publishing,(1990) . 

[11] Halmos, P. Introduction to Hilbert Space and the Theory of Spectral 

Multiplicity, Martion Fine Books, (2013).  

[12] Heil, C. A Short Introduction to Metric, Banach and Hilbert Spaces, Springer, 

(2014) . 

 [13] Kreyszig, E. Introduction Functional Analysis with Applications, Jhon Wiley 

& sons, (1989). 



  87 
 

[14] Kutateladze, S. Fundamental of Functional Analysis, Kluwer Academic 

Publisher, (1996). 

[15] Muscat, J. Functional Analysis - An Introduction to Metric Spaces, Hilbert 

Spaces and Banach Algebras, Springer,( 2014). 

[16] Schechter, M, Principles of Functional Analysis, American Mathematical 

Society, (2001). 

[17] Suhubi, E. Functional Analysis, Springer - Science & Business Media, B.V., 

(2003).                                                                                                                            

[18] Sunder, V. Operators on Hilbert Space, Springer, (2016). 

 [19] Vasudeva, H. Elements of Hilbert Spaces and Operator Theory, Springer, 

(2017). 

   [20] Dancers, D . "Introduction to Functional Analysis", The University of    

Sydney, (2017).                                                                                                                                                       

[21] Sims, B and  Rose, M . "An Introduction to Hilbert spaces", (2008) . 

  

 

  

  

 

 

 

 

 

 

 



  88 
 

 

 

 

 

 

 


