
 
 

  State of Libya  

Ministry of Higher Education and Scientific Research 

              Alasmarya Islamic University  

                                         Faculty of Science 

                                 Department of Mathematics 

   

  

     Some geometrical and analytical properties for    

    certain classes of multivalent starlike functions 

   

فصول معينة بعض الخصائص الهندسية و التحليلية ل  

النجمية متعددة التكافؤ من الدوال  
 

A thesis submitted in partial fulfilment of the requirements  

for the degree of master in mathematics 

 

                                                By 

Nouriyah Ali Nouh Abouthfeerah 

  

                                          Supervisor 

                          Dr. Somia Muftah Amsheri  

 

 

2022-2023 



II 
 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 



III 
 

Acknowledgements 

 

All praises belong to Almighty Allah, Lord and the Creator of the 

universe Who bestowed upon me the courage and His countless blessing 

enabled me to accomplish my study. He is the Most Powerful, Gracious and 

Beneficent. I wish to express my sincere appreciation to my supervisor Dr. 

Somia Muftah Amsheri for guidance, encouragements, inspiring discussions 

and support during my research work. I am very grateful to her for accepting 

me as a research student under her supervision. 

I would like to thank the Alasmarya Islamic University and 

Department of Mathematics for providing necessary research facilities. 

I also would like to thank my examiners for dedicating the time to read 

my thesis. 

At the end, my heartfelt gratitude goes to my parents and other 

members of my family for their support and cooperation throughout my 

academic career. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



IV 
 

List of symbols 

𝐴 Class of normalized analytic functions in the open unit disk 

  

𝐴  

   ( )         
         

      

Class of analytic functions in   of the form 

𝐴(𝑝) Class of analytic and 𝑝-valent functions in   

  Complex plane 

 ( ) Class of univalent convex functions of order   with negative 

coefficients 

 (𝑝  ) Class of 𝑝-valent convex functions of order   with negative 

coefficients 

 ( ) Class of univalent convex functions with respect to the  

function   

  ( ) Class of univalent convex functions of complex order    

with respect to the function   

  Class of  univalent close-to-convex functions 

 ( ) Class of  univalent close-to-convex functions of order   

 (𝑝) Class of 𝑝-valent close-to-convex functions 

 (𝑝  ) Class of 𝑝-valent close-to-convex functions of order   

  Domain 

    
  Fractional derivative operator of order     

   Sӑlӑgean differential operator 

  
  Generalized Sӑlӑgean differential operator 

   
  Al-Oboudi differential operator 

    
  Generalized Al-Oboudi differential operator 

 ( ) Class of analytic functions in   



V 
 

   Bernardi-Libera-Livingston integral operator 

     Generalized Bernardi-Libera-Livingston integral operator   

    
     

 Generalized fractional derivative operator 

  Class of univalent convex functions 

 ( ) Class of univalent convex functions of order   

   Class of univalent convex functions of complex order   

 (𝑝) Class of 𝑝-valent convex functions 

 (𝑝  ) Class of 𝑝-valent convex functions of order   

     Class of 𝑝-valent convex functions of complex order   

 ( ) Koebe function 

  Set of all positive integers 

     * + 

    
       

 Generalized fractional derivative operator for 𝑝-valent 

functions 

    
           

 Generalized differential operator for 𝑝-valent functions 

  Class of functions with positive real part 

 ( ) Subclass of the class   which satisfy    *𝑝( )+    

 (   ) Class of Janowski functions 

 ( ) Mӧbius function 

    
     

 ( ) Generalized fractional derivative operator for univalent   

functions 

  Set of all real numbers 

   Real part of a complex number 

  Class of normalized univalent functions 

   Class of  univalent starlike functions 

  ( ) Class of  univalent starlike functions of order   

  
  Class of  univalent starlike functions of complex order   



VI 
 

 

  (𝑝) Class of 𝑝-valent starlike functions 

  (𝑝  ) Class of 𝑝-valent starlike functions of order   

    
  Class of 𝑝-valent starlike functions of complex order   

  ( ) Class of univalent starlike functions with respect to the 

function   

  
 ( ) Class of univalent starlike functions of complex order   with 

respect to the function   

  
 ( ) Class of 𝑝-valent starlike functions with respect to the 

function   

    
 ( ) Class of 𝑝-valent starlike functions of complex order   with 

respect to the function   

  Class of univalent functions with negative coefficients 

  ( ) Class of univalent starlike functions of order   with negative 

coefficients 

 (𝑝) Class of 𝑝-valent functions with negative coefficients 

  (𝑝  ) Class of 𝑝-valent starlike functions of order   with negative 

coefficients 

  Open unit disk *    | |   + 

  Closed unit disk *    | |   + 

  Subordinate to 

    Hadamard product (or convolution) of  and   

( )  Pochhammer symbol 

 ( ) Gama function 

  

 ( )         
    (   )          

Class of all analytic functions of the form 

    
  ( ) Generalized fractional derivative operator for univalent 

functions 



VII 
 

List of figures 
 

Figure  2.1  :  The Koebe function  …..………………………………………..…..…..  16 

Figure  2.2  :  The function   is subordinate to the function    ……..….……..  20 

Figure  2.3  :  Mӧbius function  ………………………………...….…...…………..…..  21 

Figure  2.4  :  Domain is starlike and domain is not starlike  ……...............…..  22 

Figure  2.5  :  Domain is convex and domain is not convex  …..…..............…..  23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VIII 
 

List of contents 

   

Acknowledgements  ..........................................................................................................   III 

List of symbols  ....................................................................................................................   IV 

List of figures  .................................................................................................... .................  VII 

List of contents  ............................................................................................... ................  VIII 

Abstract  ..................................................................................................... ................................  1 

   

Chapter 1 : Introduction .................................................................................................   2 

1.1  Review of literature  ....................................................................................   2 

1.1.1  Univalent functions  ............................................................... ...........  2 

1.1.2  Multivalent functions  .......................................................................   4 

1.1.3  Coefficients bounds problem  ........................ ......................... .......  5 

1.1.4  Starlikeness and convexity conditions  ......................................   7 

1.1.5  Linear operators  .................................................................................  8 

1.2  Research problem  ........................................................................................   9 

1.3  Research objectives  ....................................................................................   9 

1.4  Research methodology  ...........................................................................   10 

1.5  Research motivations and outlines  ....................................................   10 

  

Chapter 2 : The elementary concepts of analytic univalent and  

                     multivalent functions  ...........................................................................   13 

2.1  Univalent functions  ........................................................... .......................   13 

2.2  Multivalent functions  .................................................................... . .........   17 

2.3  Functions with positive real part  ..........................................................  19 

2.4  Starlike and convex functions  ....................................... ......................   22 

2.5  Close-to-convex functions  ....................................................................   26 

2.6  Multivalent starlike and convex functions  .....................................   27 



IX 
 

2.7  Multivalent close-to-convex functions   ............................................  29 

2.8  Linear operators   .........................................................................................  31 

2.8.1  Sӑlӑgean differential operators  ....................................... ...........  31 

2.8.2  Al-Oboudi differential operators  ...............................................  32 

2.8.3  Fractional derivative operators  ........................................... .......  33 

2.8.4  Integral operators  ............................................................................  37 

 

Chapter 3 : Fekete-Szegӧ inequalities for certain classes of analytic  

                     functions  ..................................................................................................... .  38 

3.1  Introduction and preliminaries  ............................................................   38 

3.2  Certain class of 𝑝-valent functions  ....................................................   41 

3.3  Certain class of 𝑝-valent functions associated with   

       fractional derivative operator  ...............................................................   45 

3.4  Certain class of 𝑝-valent functions associated with   

                     generalized differential operator  .........................................................   49 

  

Chapter 4 : Starlikeness and convexity conditions of analytic  

                     functions  ..................................................................................................... .  57 

4.1  Introduction and preliminaries  ............................................................   57 

4.2  Conditions for 𝑝-valent functions  ......................................................   63 

4.3  Conditions for 𝑝-valent functions associated with   

       generalized differential operator  .........................................................   67 

   

Chapter 5 : Certain classes of analytic functions with negative  

                     coefficients  ................................................................................................. .  82 

5.1  Introduction and preliminaries  ............................................................   82 

5.2  On a class of 𝑝-valent functions  .........................................................   83 

5.2.1  Coefficient bounds  .........................................................................   84 

5.2.2  Distortion properties  ......................................................................   85 



X 
 

5.2.3  Convolution properties  .................................................................   87 

5.2.4  Closure properties  ...........................................................................   89 

5.2.5  Extreme points  .................................................................................   92 

5.2.6  Radius of convexity  .......................................................................   93 

5.2.7  Class-preserving integral operators  .........................................   94 

5.3  On a generalized class of 𝑝-valent functions  ................................   96 

5.3.1  Coefficient bounds  .......................................................................   97 

5.3.2  Distortion properties  ...................................................................   99 

5.3.3  Convolution properties  ...............................................................   102 

5.3.4  Closure properties  ........................................................................   106 

5.3.5  Extreme points  ..............................................................................   109 

5.3.6  Radii of close-to-convexity, starlikeness      

               and convexity   .................................................................................  111    

5.3.7  Class-preserving integral operators  ......................................   114 

5.3.8  Integral means inequalities   .......................................................  116 

Conclusion  …………………………………….....……………………..………………...  119 

Further work  ...…………..…………………………….………………….…..….……...  121 

References ………………………………...………..……...……..…...……………………  122 

  

 



 
 

Abstract 

  

The main objective of this research is to obtain several analytic and 

geometric properties of analytic and multivalent (𝑝-valent) starlike functions 

defined in the open unit disk associated with certain linear operator by 

introducing certain classes and deriving some properties. In this thesis, a wide 

class of problems is investigated. First, Fekete-Szegӧ problems for functions 

belonging to some classes of 𝑝-valent starlike functions are solved. In 

addition, numerous starlikeness and convexity conditions of 𝑝-valent 

functions are obtained. Finally, certain classes of 𝑝-valent starlike functions 

with negative coefficients are defined, in obtaining, coefficient bounds, 

distortion properties, convolution properties, closure properties, extreme 

points, radius of close-to-convexity, radius of starlikeness, radius of 

convexity, class-preserving integral operators and integral means inequalities. 
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Chapter 1 

  

Introduction 

 

The thesis consists of five chapters. The purpose of this chapter is to 

give primitive background and motivations for the remaining chapters. 

    

1.1    Review of literature 

This section is devoted to give a brief history of review of literature 

which deals with the conceptual framework of the present research problem.  

The studies reviewed focus on how interest to introduce new classes of 

analytic univalent and multivalent (or 𝑝-valent) functions and investigate their 

properties. Also, what effect of linear operators on functions belonging to 

those classes. The review of related literature studied by the researcher is 

divided into the following categories: 

 Univalent functions  

 Multivalent functions 

 Coefficients bounds problem 

 Starlikeness and convexity conditions 

 Linear operators 

 

1.1.1 Univalent functions  

Complex analysis is one of the main branches of mathematics, its roots 

back to the beginning of the 19th century [15], [18], [19] and scientists have 

taken great interest in it since the discovery of the space of complex numbers, 

because it has applications in branches of mathematics and other science. One 

may refer to the works papers presented by the most famous mathematicians 

such as Euler, Gauss, Riemann, Cauchy, Weierstrass and others.  

https://en.wikipedia.org/wiki/Euler
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Bernhard_Riemann
https://en.wikipedia.org/wiki/Cauchy
https://en.wikipedia.org/wiki/Weierstrass
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The geometric function theory is an old area of complex analysis that 

deals with geometric and analytic properties of analytic functions. It was set 

as a separately branch of complex analysis in the twenty century. Also, it has 

several applications in other areas such as modern mathematical physics, 

nonlinear integrable systems theory and the theory of partial differential 

equations.   

The theory of univalent function in the open unit disk has been 

extensively studied in the mathematical literature [15], [18] since the 

beginning of the last century and is a classical problem of complex analysis 

which belongs to one of the most beautiful subjects in geometric function 

theory when appeared the first important paper by Koebe in 1907 on Riemann 

mapping theory and conformal mappings, to Gronwall’s proof of the area 

Theorem in 1914, and to Bieberbach’s conjecture for the coefficient problem 

in 1916 which was solved by Branges in 1985. By then, univalent function 

theory was a subject in its own right.    

Moreover, to study the properties of a function on a simply connected 

domain  , it is so vast and complicated, the most obvious is to replace the 

arbitrary domain   by one that is convenient, and the most attractive selection 

is the open unit disk as a domain of definition of univalent function which has 

the advantage of simplifying the computations and leading to short and 

elegant formulas [15], [18], [19]. Various other terms are used for this 

concept (univalent), e.g. simple, or schlicht (the German word for simple).  

The geometry theory of functions is mostly concerned with the study of 

properties of normalized univalent functions   which belong to the class   

and defined in the open unit disk  . The image domain of   under univalent 

function is of interest if it has some nice geometry properties. For example, a 

convex domain is an outstanding example of a domain with nice properties. 

Another example such domain is starlike with respect to a point. Certain 

subclasses of those analytic univalent functions which map   onto these 
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geometric domains are introduced and their properties are widely 

investigated, for example, the classes   and    of univalent convex and 

univalent starlike functions, respectively. It was observed that both of these 

classes are related with each other through classical Alexander type relation 

[1] which says     if and only if         The special subclasses of these 

classes are the classes  ( ) and   ( ) of univalent convex and univalent 

starlike functions of order        , respectively. If    , the classes of 

univalent convex and univalent starlike functions, respectively are obtained. 

These classes were first introduced by Robertson [51] and were studied 

subsequently by Schild [58], Pinchuk [45], Jack [23] and others. 

Also, the classes of univalent convex and univalent starlike functions 

are closely related with the class   of analytic functions with positive real 

part,  many problems are solved by using the properties of this class [21], 

[32], [49] and others.  

 

1.1.2  Multivalent functions 

The natural generalization of univalent function is 𝑝-valent (or 

multivalent) function which belongs to the class 𝐴(𝑝) 𝑝    and defined in 

the open unit disk  . If   is 𝑝-valent function with 𝑝   , then    it is 

univalent function. Also, the classes   and    of univalent convex and 

univalent starlike functions were extended to the classes  (𝑝) and   (𝑝) of 

𝑝-valent convex and 𝑝-valent starlike functions, respectively by Goodman 

[17]. The special subclasses of these classes  (𝑝) and   (𝑝) are the classes 

  (𝑝  ) and   (𝑝  ) of 𝑝-valent convex and 𝑝-valent starlike functions of 

order       𝑝. If    , the classes of 𝑝-valent convex and 𝑝-valent 

starlike functions, respectively are obtained. The class  (𝑝  ) was introduced 

by Owa [40] and the class   (𝑝  ) was introduced by Patil and Thakare [44]. 
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Notice that the studies reviewed focus on how interest to introduce new 

classes of analytic univalent and 𝑝-valent functions and investigate their 

properties such as coefficient bounds, distortion properties, extreme points, 

radii of starlikeness and convexity and others.  

 

1.1.3 Coefficients bounds problem  

In most cases, solutions of differential equations are usually expressed 

in series expansion form and it is desired that the series converge. Convergent 

of series depend largely on the coefficient of the expansions thus, it is of 

interest to research into coefficients bounds.  

The famous coefficient problem is the Bieberbach’s conjecture, it states 

that if    , then |  |    for each    . This conjecture was unsolved for 

about 70 years, although it had been proved in several special cases   

          and many other subclasses of  . In 1916, the first result was given 

by Bieberbach for     which satisfies |  |   . But finally, Louis de 

Brages settled it in 1985 [15], [18]. This result was used as an application to 

show that if   is univalent and normalized in the open unit disk and the image 

domain of   under   must cover the open disk with center at the origin and 

radius 
 

 
. Because of several other applications on coefficient bounds, many 

authors have researched coefficient bounds for different subclasses of 

univalent and multivalent functions. 

The problem of coefficient bounds is one of interesting problems which 

was studied by researchers for various classes of starlike and convex (𝑝-valent 

starlike and 𝑝-valent convex) functions with negative coefficients in the open 

unit disk. Closely related to this problem is to determine how large the 

modulus of a univalent or 𝑝-valent function together with its derivatives can 

be in a particular class. Such results, referred to as distortion inequalities 

which provide important information about the geometry of functions in that 
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class. The result which is as inequality is called sharp (best possible or exact) 

in sense, that it is impossible to improve the inequality (decrease an upper 

bound, or increase a lower bound) under the conditions given and it can be 

seen by considering a function such that equality holds. This function is called 

extremal function. A function belong to the class of functions is called an 

extreme point if it cannot be written as a proper convex combination of two 

other members of this class. The radius of starlikeness or convexity problem 

for a certain class of functions is to determine the largest disk | |    , i.e. the 

largest number of          such that each function   in the class is 

starlike or convex in | |   . One may refer to the books by [15], [18], [19] 

and [37]. 

Those problems have attracted many mathematicians involved in 

geometric function theory, for example, Silverman [60] introduced and 

studied the classes   ( ) and  ( ) of starlike and convex functions with 

negative coefficients of order  ,      , respectively. These classes were 

generalized to the classes   (𝑝  ) and  (𝑝  ) of 𝑝-valent starlike and 

convex functions with negative coefficients of order  ,     𝑝 

respectively, which were introduced by Owa [40], in order to derive the 

similar properties above. There are many contributions on connections 

between various subclasses of analytic univalent and multivalent functions 

were studied by researchers [10], [12], [42], [56], [59], [61], [63] and others.   

Moreover, further studies on the generalized families of coefficient 

bounds. In 1933, Fekete and Szegö obtained the sharp bound of |      
 | as 

a function of real parameter   for the class   of univalent functions [13]. The 

result is sharp in the sense that for each   there is a function in the class under 

consideration for which the equality holds. This is known as Fekete-Szegö 

inequality or Fekete-Szegö problem.  

 There are several results for this type in literature, each of them dealing 

with |      
 |  for various classes of functions. For example, Ma and Minda 
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[32] solved the Fekete-Szegö problem for univalent starlike and convex 

functions in the classes   ( ) and  ( ), respectively, for the univalent 

starlike function  ( ) with respect to 1 which maps the open unit disk   onto 

a region in the right half-plane and symmetric with respect to the real axis 

such that  ( )    and   ( )   . Also, Ravichandran et. al. [49] solved the 

Fekete-Szegö problem for univalent starlike functions of complex order in the 

class   
 ( ). The sharp bounds for the functional |          

 | have been 

solved for generalized class     
 ( ) of 𝑝-valent starlike functions by Ali et. 

al. [2]. These results were generalized [8] by making use of the fractional 

derivative operator. There are many papers on this problem that can refer to 

[26], [48] and others.  

 

1.1.4 Starlikeness and convexity conditions 

The problem of sufficient conditions for starlikeness and convexity is 

concerning to find conditions under which functions in certain class are 

starlike or convex, respectively. There are many works on the sufficient 

conditions for starlikeness and convexity of analytic functions, for example, 

Ruscheweyh and Sheil-Small [54] obtained many sufficient conditions for 

starlikeness and convexity. Also, Silverman [60] obtained the sufficient 

conditions for functions to be in the class   ( ) or the class  ( ). Further, 

Owa and Shen [41] introduced various sufficient conditions for starlikeness 

and convexity of univalent functions involving the fractional derivative 

operator     
  by using results of Silverman [60] and by using results 

involving the Hadamard product (or convolution) due to Ruscheweyh and 

Sheil-Small [54]. These results were generalized by Raina and Nahar [47] to 

obtain useful results that deal with the starlikeness and convexity for the 

fractional derivative operator     
     

 of analytic and univalent functions. 
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Furthermore, there are other results for starlikeness and convexity 

conditions have been obtained by Jackʼs Lemma and Nonokawaʼs Lemma, 

for example, Irmak and Piejko [21] investigated some starlikeness and 

convexity of certain normalized functions which are analytic and univalent in 

the open unit disk.    

Moreover, various results were extended by solving this problem for 𝑝-

valent functions, for example, Owa [40] proved the sufficient conditions for 

analytic and 𝑝-valent functions to be in the classes   (𝑝  ) and  (𝑝  ) for 

𝑝    and     𝑝. Also, Amsheri and Zharkova [7] obtained many 

sufficient conditions for starlikeness and convexity of 𝑝-valent functions 

associated with the fractional derivative operator     
       

 by using known 

results for the classes   (𝑝  ) and  (𝑝  ) due to Owa [40] and by using 

results involving the Hadamard product due to Ruscheweyh and Sheil-Small 

[54]. There are many other researchers [20], [22], [43] and others who studied 

starlikeness and convexity conditions. 

 

1.1.5 Linear operators  

The concept of the differentiation operator      ⁄  is familiar to all 

who studied the elementary calculus, and for suitable function  , the nth 

derivative of  , namely    ( )     ( )    ⁄  is well defined provided that 

  is a positive integer. In 1695, L’Hôpital inquired of Leibniz what meaning 

could be ascribed to     if   were a fraction. Since that time the fractional 

calculus has drawn the attention of many famous mathematicians, such as 

Euler, Laplace, Fourier, Abel, Liouville, Riemann, and Laurent. But it was not 

until 1884 that the theory of generalized operators achieved a level in its 

development suitable as a point of departure for the modern mathematician. 

By then the theory had been extended to include operators   , where   could 
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be rational or irrational, positive or negative, real or complex [33]. Thus the 

name fractional calculus became somewhat of a misnomer.  

The fractional derivative operator has found interesting applications in 

the theory of analytic functions as well as other linear operators such as 

Sӑlӑgean operator and Al-Oboudi operator have been applied in introducing 

various classes of analytic functions and obtaining several properties. For 

numerous works on this subject, one may refer to the works which were 

studied [3], [7], [8], [11], [16], [22], [27], [31], [39], [41], [47], [48], [49], 

[55], [57], [59], [63], [64] and others. 

 

1.2    Research problem 

The thesis is organized with solutions to a number of problems. For 

example, the following problems are considered:  

1. Find the bounds for the functional |          
 | for 𝑝-valent 

functions belonging to certain classes?  

2. What are the sufficient conditions for starlikeness and convexity of 𝑝-

valent functions? 

3. How does the series of coefficients influence the geometric and analytic 

properties of functions which belong to certain classes of 𝑝-valent 

starlike functions?  

 

1.3    Research objectives  

The main objective of this research is to obtain some geometrical and 

analytical properties for certain classes of 𝑝-valent starlike functions defined 

in the open unit disk by using differential operators. That are  

1. To define some classes of 𝑝-valent functions and solve Fekete-Szegӧ 

problem for functions belonging to those classes.  
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2. To find sufficient conditions for 𝑝-valent functions to be starlike and 

convex.  

3. To identify some classes of 𝑝-valent functions with negative 

coefficients and find coefficient bounds, distortion properties, 

convolution properties, closure properties, extreme points, radius of 

close-to-convexity, radius of starlikeness, radius of convexity, class-

preserving integral operators and integral means inequalities. 

 

1.4   Research methodology 

      The following analytical methods are proposed to be used to undertake 

the research work: 

 Subordination between analytic functions. 

 Methods arising from the convolution theory. 

These methods are also proposed to be used to study theorems and to discuss 

the geometric properties of the defined classes. 

 

1.5    Research motivations and outlines 

In geometric function theory, the attention to geometrical and analytical 

properties for univalent and 𝑝-valent functions has been the main interest 

among authors. Hence there are many new subclasses and new properties of 

univalent and 𝑝-valent functions have been introduced. The study of operators 

plays a vital role in mathematics. To apply linear operators for univalent and 

𝑝-valent functions and then study their properties, is one of the hot areas of 

current ongoing research in geometric function theory. 

In this thesis, motivated by wide applications of linear operators in the 

study of univalent and 𝑝-valent functions [3], [7], [8], [11], [16], [22], [27], 

[31], [33], [39], [41], [47], [48], [49], [55], [57], [59], [63], [64] and others, 

we present a study regarding various properties of some classes of 𝑝-valent 
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starlike functions such as sharp coefficient bounds, sufficient conditions for 

starlikeness and convexity and properties of classes of functions with negative 

coefficients.  

By studying the theory of univalent and multivalent function and 

motivated by the linear operators, chapter 2 deals with the elementary 

concepts of univalent functions, multivalent functions and functions with a 

positive real part. This chapter also presents some classes of starlike, convex 

and close-to-convex (𝑝-valent starlike, 𝑝-valent convex and 𝑝-valent close-to-

convex) functions in the open unit disk and contains some definitions of linear 

operators.  

Many authors have solved the classical result of Fekete and Szegö 

|      
 | for various classes of analytic functions, motivated by the works 

[2], [8], [13], [26], [32], [48], [49] and others, we form chapter 3, which deals 

with Fekete-Szegö inequalities for well-known classes of 𝑝-valent functions. 

Furthermore, a new class of  𝑝-valent functions associated with generalized 

differential operator     
           

 is introduced and Fekete-Szegö inequalities 

are obtained.  

In addition, as a motivation of some works on starlikeness and 

convexity conditions due to [7], [20], [21], [22], [41], [43], [47], [54] and 

others, we form chapter 4, which leads to give conditions for 𝑝-valent 

functions and find some new conditions for 𝑝-valent functions associated with 

the operator     
           

.  

Several classes of univalent functions have been extended to the case of 

𝑝-valent functions in obtaining some properties such as coefficient bounds, 

distortion properties, convolution properties, closure properties, extreme 

points, radius of close-to-convexity, radius of starlikeness, radius of 

convexity, class-preserving integral operators and integral means inequalities, 

motivated by the studies [10], [12], [40], [42], [56], [59], [60], [61], [63] and 
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others, we form chapter 5, which deals with obtaining the properties of the 

well-known class of 𝑝-valent functions   (𝑝  ) and a new class of 𝑝-valent 

functions defined by the operator     
           

.   
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Chapter 2 

 

The elementary concepts of analytic 

univalent and multivalent functions 

   

The purpose of this elementary chapter is to review some of the general 

principles of Complex Analysis, which underlie the Geometric Function 

Theory of complex variable.  

        

2.1 Univalent functions 

In this section, some definitions and basic results concerning analytic 

and univalent functions in the open unit disk are presented. 

Definition 2.1.1 [15], [19], [66]  

1.     A domain   is an open connected set in the complex plane  . A domain 

is said to be simply connected if its complement is connected. 

Geometrically, a simply connected domain is not contained any holes.   

2. A neighborhood of a set     is an open subset which contains   in 

the complex plane  .  

3. A function is a rule of correspondence between two sets such that there 

is a unique element in the second set assigned to each element in the 

first set.   

4. A complex-valued function  ( ) of a complex variable is differentiable 

at a point       if it has a derivative  

  (  )      
    

 ( )   (  )

    
                                                       

5. A function  ( ) is analytic at    if it is differentiable at    and every 

point in some neighborhood of   . A function  ( ) is analytic on a 
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domain   if it is analytic at all points in    The function  ( ) must 

have derivatives of all orders at   , and that  ( ) has a Taylor series 

expansion 

 ( )  ∑  (    )
 

 

   

             
 ( )(  )

  
                       

which converges in some open disk centered at    .  

6. A function  ( ) is entire function if it is analytic in the whole complex 

plane  .  

7. The open unit disk   is the set of all points     of modulus | |       

  *    | |   +                                                           

          The closed unit disk    is the set of all points     of modulus      

           | |    

  *    | |   +                

8. The class  ( ) is the set of all analytic functions in  . 

9. A function  ( ) which is an analytic on a domain   is said to be 

univalent there if it does not take the same value twice, that is  (  )  

 (  ) for all pairs of distinct points    and    in  . In other words  ( ) 

is one-to-one mapping on   onto another domain.     

10. A function  ( ) which is an analytic on a domain   is said to be locally 

univalent at a point      if it is univalent in some neighborhood of 

  . It is evident that  ( ) is locally univalent at    provided   (  )   .  

Definition 2.1.2 [12]    

1. The class 𝐴 ,     *       + is the subset of  ( ) consisting of 

all functions of the form  

 ( )         
         

             (   )              (     ) 

        for      the class 𝐴  𝐴 is the subclass of the class  ( ) of       

functions of the form   
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 ( )    ∑   
 

 

   

                               (   )              (     ) 

which are normalized by  ( )    and   ( )   .  

2.   The class   is the subclass of the class 𝐴 consisting of univalent 

functions.  

3. The class   is the subclass of the class   which consists of functions 

having non-zero coefficients, from the second on, are negative of the 

form 

 ( )    ∑   
 

 

   

                 (        )            (     ) 

Definition 2.1.3 [65]  

The functions   ( ) are called rotations of the function  ( ) which belongs to 

the class   if for any real number  , the functions   ( )       (    ) are 

also in the class  .  

Definition 2.1.4 [41], [43]    

1. The Hadamard product (or convolution) of  ( )  𝐴 given by (2.1.2) 

and  ( )  𝐴 given by  

 ( )    ∑   
  

 

   

                              (   )              (     ) 

        is denoted by (   )( ) and defined by  

(   )( )    ∑     
  

 

   

                         (   )              (     ) 

2. The Hadamard product (or convolution) of  ( )    given by (2.1.3) 

and  ( )    given by  

 ( )    ∑   
  

 

   

                         (        )        (     ) 
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        is denoted by (   )( ) and defined by  

(   )( )    ∑     
  

 

   

                          (   )           (     ) 

Example 2.1.5 [15] 

The identity function  ( )    is in the class  . 

Example 2.1.6 [15] 

The function  

 ( )  
 

   
   ∑   

 

   

                           (   )                         

is in the class  . It maps   onto       
 

 
.  

Example 2.1.7 [18] 

The Koebe function  ( ) is in the class   and given by 

 ( )  
 

(   ) 
 
 

 
((
   

   
*
 

  )    ∑     

 

   

  (   )             

it maps   one-to-one onto the domain   that consists of the whole complex 

plane except for a slit along the half-line (    
 

 
-.  

 

  

 

 

    

    

   

       

𝒰 

  𝑧

  𝑧
 

 

 
𝑧  𝑧  

 

 
 

  Figure 2.1: The Koebe function   
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The Koebe function and its rotations, play a very important role in the 

study of the class  . They often are the extremal functions for various 

problems in  . 

In1916, Bieberbach proved the following theorem [18] about the 

estimating the second coefficient    of a function of class  .  

Theorem 2.1.8 (Bieberbach’s Theorem)  

If  ( )   , then |  |   . Equality holds if and only if  ( ) is a rotation of 

the Koebe function  ( ). 

The problem known as the "Bieberbach’s conjecture" has played a 

central role in the development of the subject of univalent functions. Many 

interesting techniques in geometric function theory were developed to obtain 

various partial results on the Bieberbach’s conjecture. The full Bieberbach 

conjecture was finally proved in 1985 by De Branges [14]. 

Theorem 2.1.9 (Bieberbach’s Conjecture) 

If  ( )   , then |  |    for all    . If for any  , |  |   , then  ( ) is a 

rotation of the Keobe function  ( ).  

The following theorem [46] is another coefficient problem which deals 

with the bounds of |     
 |. 

Theorem 2.1.10  

If  ( )   , then |     
 |     

 

2.2 Multivalent functions 

This section is devoted to present some concepts concerning the 

generalized univalent functions in the open unit disk, namely the multivalent 

(or  -valent) functions. 

Definition 2.2.1 [18] 

A function  ( ) analytic in the open unit disk   is said to 𝑝-valent in  , or 

multivalent of order 𝑝 (𝑝       ) in   if the equation    ( ) has never 

more than 𝑝-solutions in   and there exists some   for which this equation 
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has exactly 𝑝 solutions. For 𝑝   , the 𝑝-valent function  ( ) reduces to 

univalent function. 

Definition 2.2.2 [40] 

1. The class 𝐴(𝑝) is the set of all functions of the form  

 ( )     ∑     
    

 

   

            (𝑝       )         (     ) 

which are analytic and 𝑝-valent in the open unit disk  .   

2. The class  (𝑝) is a subclass of the class 𝐴(𝑝) consisting of all 𝑝-valent 

functions with negative coefficients of the form  

 ( )     ∑     
   

 

   

       (       𝑝       )      (     ) 

Definition 2.2.3 [7], [40] 

1. The Hadamard product of  ( )  𝐴(𝑝) given by (2.2.1) and  ( )  

𝐴(𝑝) given by 

  ( )     ∑       
     

 

   

         (𝑝       )         (     ) 

          is denoted by (   )( ) and defined by  

    (   )( )     ∑           
     

 

   

      (𝑝       )         (     ) 

2. The Hadamard product of  ( )   (𝑝) given by (2.2.2) and  ( )  

 (𝑝) given by 

  ( )     ∑       
     

 

   

       (       𝑝       )     (     ) 

          is denoted by (   )( ) and defined by  

    (   )( )     ∑           
     

 

   

      (𝑝       )         (     ) 
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Example 2.2.4 [65] 

The 𝑝-valent function  ( )    ,  𝑝    maps   onto  , but each image 

point (except    ) has 𝑝 different preimages. More picturesquely,  ( )  

   can be viewed as mapping   in the  -plane univalently onto a spiral-like 

surface with 𝑝 layers (sheets) hovering over   in the  -plane. 

 

2.3 Functions with positive real part 

In this section, the concept of subordination between analytic functions 

in the complex plane is presented, which was developed by Littlewood [28], 

[29] and Rogosinski [52], [53]. Also, the class of all analytic functions with 

positive real part is defined. These functions map the open unit disk   onto 

right half-plane. 

The following classical result, which popularly known as Schwarz’s 

Lemma in the literature have been used in defining the subordination 

principle. 

Schwarz’s Lemma 2.3.1 [37] 

Let the function  ( ) be analytic in   and let  ( )   . If | ( )|    (  

 ) then | ( )|  | |. The equality can hold only if  ( )     and | |   . 

Definition 2.3.2 [19] 

The class   is the set of all analytic functions of the form 

 ( )         
              (   ) 

such that  ( )    and | ( )|   . In other words,   consists precisely of 

those analytic functions on   which satisfy the hypotheses of the Schwarz’s 

Lemma.  

Definition 2.3.3 (Subordination principle) [18]  

Let the functions  ( ) and  ( ) be analytic in  . The function   is said to be 

subordinate to the function   (written     or  ( )   ( )), if there exists a 

Schwarz function     such that  ( )   ( ( ))    . Furthermore, if 
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the function   is univalent, then     if and only if  ( )   ( ) and 

 ( )   ( ).  

 

 

  

   . 

 

 

 

 

 

Definition 2.3.4 [18]  

The class   is the set of all analytic functions in   of the form 

𝑝( )    ∑   
 

 

   

                          (   )                 (     ) 

which satisfy the conditions 𝑝( )    and    *𝑝( )+    (   ). This class 

is usually called the Carathéodory class.  

The following example shows that the class   need not to be univalent. 

Example 2.3.5 [46]  

The function 

                                𝑝( )        ,                          (   )  

for any    , but if    , this function is not univalent.  

Example 2.3.6 [18] 

The Mӧbius function  

       ( )  
   

   
    ∑  

 

   

            (   )                               

𝒰 

𝑓(𝒰) 

𝑔(𝒰) 

𝑓(𝑧) 

𝑔(𝑧) 

𝑓( )  𝑔( ) 

Figure 2.2:  The function 𝑓 is subordinate to the function 𝑔  
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this function is in the class  , it is analytic and univalent in  , and it maps   

onto the right half-plane. 

 

 

 

 

 

 

 

 

Definition 2.3.7 [18] 

Any function 𝑝( ) in the class   is called a function with positive real part in 

  and satisfies  𝑝( )     if and only if  𝑝( )  
   

   
 . 

Some special subclasses of the class   play an important role in 

geometric function theory because of their relations with subclasses of 

univalent functions. Many such classes have been introduced and studied 

some became the well-known.   

Definition 2.3.8 [18] 

The class  ( ) is the subclass of the class   of analytic functions 𝑝( ) for 

which satisfy    *𝑝( )+   ,       and    . A functions 𝑝( )  

 ( ) can be written as 

𝑝( )  (   )𝑝 ( )                    (𝑝 ( )   ) 

Definition 2.3.9  

The class  (   ) is the subclass of the class    of analytic functions 𝑝( ) in 

  with  𝑝( )    for given arbitrary numbers     (        ), and 

satisfy the following condition 

𝑝( )   (   )  𝑝( )  
    

    
               

𝑃(𝑧) 

𝒰 

   𝑧    

Figure 2.3: Mӧbius function  
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The class  (   ) was introduced by Janowski [24]. In particular, for special 

selections of A and B, we have  

1.  (    )     

2.  (       )   ( )         (     )     

3.      (   ) is the class of functions 𝑝(z) defined by |𝑝( )   |   .  

 

2.4    Starlike and convex functions 

This section is devoted to study the most important subclasses of  , 

namely the classes of starlike and convex functions, which are closely related 

to the class  . Both classes are defined by geometrical considerations, but 

both have very useful analytic characterizations. 

Definition 2.4.1 [18]     

A domain   in   is said to be starlike with respect to a fixed point      if 

the closed line segment joining any point     to    lies entirely in  . 

A function  ( )    in   is said to be starlike with respect to    if    

is mapped onto a starlike domain with respect to   . In the special case, when 

    , the function  ( ) is said to be starlike with respect to the origin (or 

starlike). 

The class of all functions of    which are starlike in the open unit disk   is 

denoted by   . 

 

  

 

  

 

 

 

 

 

𝑤  

Domain is starlike 

with respect to 𝑤𝑜  

Domain is not starlike 

with respect to 𝑤𝑜  

𝑤  

Figure 2.4: Domain is starlike and domain is not starlike   

𝐷 𝐷 
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Domain is not convex   Domain is convex 

Figure 2.5: Domain is convex and domain is not convex   

The well-known analytical characterization for starlikeness is given as 

follows. 

Theorem 2.4.2 [15] 

If  ( )   . Then  ( )     if and only if     ( )  ( )    ⁄  that is 

  ,
   ( )

 ( )
-                                   (   )                        (     ) 

Definition 2.4.3 [18]      

A domain   in   is said to be convex if for all          the closed line 

segment between    and    lies entirely in  . In other words, a domain   is 

said to be convex if it is starlike with respect to each of its points. 

A function  ( )    is said to be convex if   is mapped onto a convex 

domain.  

The class of all functions of    which are convex in the open unit disk   is 

denoted by    

  

   

 

    

 

 

 

 

The following well-known analytical characterization for convexity is 

presented. 

Theorem 2.4.4 [15] 

If  ( )   . Then  ( )     if and only if        ( )   ( )    ⁄  that is 

  ,  
    ( )

  ( )
-                          (   )                      (     )   

𝐷 𝐷 

𝑧  

𝑧  
𝑧  

𝑧  
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The results given in Theorem 2.4.2 and Theorem 2.4.4 lead to a very 

useful and beautiful relationship between the classes    and  . This 

connection was first discovered in 1915 by Alexander [1] and is known as 

Alexander’s Theorem. 

Theorem 2.4.5   

If  ( )   , then  ( )    if and only if    ( )    . 

Remark 2.4.1 

Every convex function is starlike. Then       . 

Example 2.4.6 [18] 

The Koebe function  ( ) is starlike but not convex. 

Example 2.4.7 [18] 

The function 

 ( )  
 

   
                                                                      

is convex. 

The following result gives the relationship between the classes   and   

which is known as Noshiro – Warschawski Theorem. 

Theorem 2.4.8 [15]  

If  ( ) is analytic function in a convex domain   and    (  ( ))   , then 

 ( ) is univalent on       

In 1936, Robertson [51] introduced the following two subclasses of 

starlike and convex functions in the open unit disk, respectively, that are 

  ( ) and  ( ).  

Definition 2.4.9   

A function  ( )    is said to be starlike function of order  ,       if 

and only if 

  ,
   ( )

 ( )
-                                   (   )                        (     ) 
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The class of all starlike functions of order  ,       is denoted by   ( ). 

Notice that, 

                                  ( )                                                                

Definition 2.4.10   

A function  ( )    is said to be convex function of order  ,       if 

and only if 

  ,  
    ( )

  ( )
-                           (   )                        (     ) 

The class of all convex functions of order  ,       is denoted by  ( ). 

Notice that, 

                            ( )                   

There is an Alexander type result [60] relating   ( ) and  ( ) which 

says the function  ( )   ( ) if and only if    ( )    ( ) for       

and    . 

In 1985, Nasr and Aouf [36] introduced the following subclass of 

starlike functions in the open unit disk, that is   
 . 

Definition 2.4.11  

A function  ( )    is said to be starlike function of complex order  ,   

  * +, if and only if   
 ( )

 
   and 

  ,  
 

 
(
   ( )

 ( )
  )-                     (   )                        (     ) 

The class of all starlike functions of complex order  ,     * + is denoted 

by   
 . Notice that, 

                             
    ,     

    ( );       

In 1982, Nasr and Aouf [35] introduced the following subclass of 

convex functions in the open unit disk, that is   .     
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Definition 2.4.12  

A function  ( )    is said to be convex function of complex order       

* +, if and only if   ( )    and 

  ,  
 

 

    ( )

  ( )
-                            (   )                        (     ) 

The class of all convex functions of complex order  ,     * + is denoted 

by   . Notice that, 

                                     ,       ( );       

 

2.5   Close-to-convex functions 

In this section, other well-known subclass of univalent functions in the 

open unit disk, namely the close-to-convex functions is considered. 

In 1952, Kaplan [25]  introduced the class of close-to-convex functions 

as follows. 

Definition 2.5.1   

A function  ( )    is said to be close-to-convex function if there is a convex 

function   such that  

  (
  ( )

  ( )
)                                  (   )                        (     ) 

An equivalent formulation would involve the existence of a starlike function 

 ( ) such that 

  (
   ( )

 ( )
)                               (   )                        (     ) 

The class of all close-to-convex functions is denoted by     

There is a beautiful relationship between close-to-convex functions and 

univalent functions given by the following theorem. 

Theorem 2.5.2 [15] 

Every close-to-convex function is univalent. 
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Remark 2.5.1 

Every convex function is close-to-convex and every starlike function is close-

to-convex. Then it is clear that           

In 1956, Reade [50] introduced the following subclass of close-to-

convex functions in the open unit disk, that is  ( ).   

Definition 2.5.3 

A function  ( )    is said to be close-to-convex function of order     

    if there is a convex function   such that  

  (
  ( )

  ( )
)                                 (   )                        (     ) 

An equivalent formulation would involve the existence of a starlike function 

 ( ) such that 

  (
   ( )

 ( )
)                               (   )                        (     ) 

The class of all close-to-convex functions of order         is denoted 

by  ( ). Notice that, 

                                     ( )      

 

2.6    Multivalent starlike and convex functions 

This section is devoted to study the most important subclasses of the 

class 𝐴(𝑝) of 𝑝-valent (or multivalent) functions, namely the classes of  𝑝-

valent starlike and 𝑝-valent convex functions which were studied by 

Goodman [17] and defined as follows.  

Definition 2.6.1    

A function  ( )  𝐴(𝑝) is said to be 𝑝-valent starlike function if and only if 

  ,
   ( )

 ( )
-                       (𝑝        )                  (     ) 

The class of all 𝑝-valent starlike functions is denoted by   (𝑝). Notice that, 

                                    ( )     
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Definition 2.6.2   

A function  ( )  𝐴(𝑝) is said to be 𝑝-valent convex function if and only if 

  ,  
    ( )

  ( )
-                   (𝑝       )                  (     ) 

The class of all 𝑝-valent convex functions is denoted by  (𝑝). Notice that 

                                 ( )    

Patil and Thakare [44] introduced the following subclass of 𝑝-valent 

starlike functions in the open unit disk, that is   (𝑝  ).  

Definition 2.6.3   

A function  ( )  𝐴(𝑝) is said to be 𝑝-valent starlike function of order     

  𝑝 if and only if 

  ,
   ( )

 ( )
-                          (𝑝        )                  (     ) 

The class of all 𝑝-valent starlike functions of order       𝑝 is denoted 

by   (𝑝  ). Notice that, 

                                 (𝑝  )    (𝑝)    (   )    ( )     (   )     

  

Owa [40] introduced the following subclass of 𝑝-valent convex 

functions in the open unit disk, that is  (𝑝  ).  

Definition 2.6.4   

A function  ( )  𝐴(𝑝) is said to be 𝑝-valent convex function of order     

  𝑝 if and only if 

  ,  
    ( )

  ( )
-                   (𝑝       )                  (     ) 

The class of all 𝑝-valent convex functions of order       𝑝 is denoted 

by  (𝑝  ). Notice that, 

                            (𝑝  )   (𝑝)  (   )   ( )    (   )    
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There is an Alexander type result [40] relating   (𝑝  ) and  (𝑝  ) 

which says the function  ( )   (𝑝  ) if and only if    ( ) 𝑝⁄    (𝑝  ) for 

    𝑝, 𝑝    and    . 

The following subclass of 𝑝-valent starlike functions in the open unit 

disk, that is     
  was given by El Ashwah [16] as follows. 

Definition 2.6.5  

A function  ( )  𝐴(𝑝) is said to be 𝑝-valent starlike function of complex 

order       * +, if and only if   
 ( )

 
   and 

  ,  
 

 
(
   ( )

𝑝 ( )
  )-                    (𝑝       )               (     ) 

The class of all 𝑝-valent starlike functions of complex order       * + is 

denoted by     
 . Notice that, 

                               
    

        
     

        Aouf [9] introduced the following subclass of 𝑝-valent convex functions 

in the open unit disk, that is     . 

Definition 2.6.6  

A function  ( )  𝐴(𝑝) is said to be 𝑝-valent convex function of complex 

order       * +  if and only if   ( )    and 

  ,  
 

 
 
 

 𝑝
(  

    ( )

  ( )
)-             (𝑝       )               (     ) 

The class of all 𝑝-valent convex functions of complex order       * + is 

denoted by     . Notice that, 

                                

 

2.7   Multivalent close-to-convex functions 

          In this section, other well-known subclass of 𝑝-valent functions in the 

open unit disk, namely the close-to-convex functions is defined. 
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Livingston [30] defined the class of 𝑝-valent close-to-convex functions 

as follows. 

Definition 2.7.1  

A function  ( )  𝐴(𝑝) is said to be 𝑝-valent close-to-convex function if 

there is a convex function  ( ) such that  

  (
  ( )

  ( )
)                            (𝑝       )              (     )  

An equivalent formulation would involve the existence of a starlike function 

 ( ) such that 

  (
   ( )

 ( )
)                          (𝑝       )              (     )  

The class of all 𝑝-valent close-to-convex functions is denoted by  (𝑝). Notice 

that, 

                                ( )    

Also, Mishra and Sahu [34] introduced the following subclass of 𝑝-

valent close-to-convex functions in the open unit disk, that is  (𝑝  ). 

Definition 2.7.2 

A function  ( )  𝐴(𝑝) is said to be 𝑝-valent close-to-convex function of 

order       𝑝 if there is a convex function  ( ) such that  

  (
  ( )

  ( )
)                           (𝑝       )              (     )  

An equivalent formulation would involve the existence of a starlike function  

 ( ) such that 

  (
   ( )

 ( )
)                         (𝑝       )              (     )  

The class of all 𝑝-valent close-to-convex functions of order       𝑝 is 

denoted by   (𝑝  ). Notice that, 



31 
 

                            (𝑝  )   (𝑝),  (   )    ( ),  (   )      

 

2.8   Linear operators 

          In this section, the definitions of certain known differential and integral 

operators are introduced, which will be required in later sections. 

   

2.8.1 Sӑlӑgean differential operators  

In 1983, Sӑlӑgean [55] defined and studied the following differential 

operator for  ( )  𝐴.   

Definition 2.8.1.1  

For  ( )  𝐴 and        * +, the differential operator    𝐴  𝐴 is 

defined by 

                           ( )   ( ) 

                           ( )    ( )     ( ) 

and (in general) 

                         ( )   (     ( ))  

                        ∑     
  

 

   

                    (   )               (       ) 

Motivated essentially by Sӑlӑgean [55], the 𝑝-valent Sӑlӑgean 

differential operator for  ( )  𝐴(𝑝) was given by Shenan et. al. [59] as 

follows.  

Definition 2.8.1.2  

For  ( )  𝐴(𝑝)      and 𝑝   , the differential operator   
  𝐴(𝑝)  

𝐴(𝑝) is defined by 

                          
  ( )   ( ) 

                          
  ( )     ( )  

 

𝑝
   ( ) 
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and (in general) 

                    
  ( )    (  

    ( )) 

     ∑(
𝑝   

𝑝
*
 

     
   

 

   

         (   )       (       ) 

Notice that, 

                    
  ( )     ( ) 

 

2.8.2 Al-Oboudi differential operators  

In 2004, Al-Oboudi [3] defined and studied the following differential 

operator for  ( )  𝐴.   

Definition 2.8.2.1  

For  ( )  𝐴      and    , the differential operator    
  𝐴  𝐴 is 

defined by 

                     
  ( )   ( ) 

                     
  ( )     ( )  (   ) ( )      ( ) 

and (in general) 

                     
  ( )     (  

    ( )) 

    ∑,  (   ) -    
 

 

   

         (   )       (       ) 

Notice that, 

                    
  ( )     ( ) 

Motivated essentially by Al-Oboudi [3], the 𝑝-valent Al-Oboudi 

differential operator for  ( )  𝐴(𝑝) was defined by Aouf [10] as follows.  

Definition 2.8.2.2  

For  ( )  𝐴(𝑝),     ,     and 𝑝   , the differential operator 

    
  𝐴(𝑝)  𝐴(𝑝) is defined by 
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  ( )   ( ) 

                    
  ( )       ( )  (   ) ( )  

 

𝑝
   ( ) 

and (in general) 

                    
  ( )      (    

    ( )) 

     ∑(
𝑝    

𝑝
*
 

     
   

 

   

        (   )       (       ) 

Notice that, 

                    
  ( )    

  ( ),     
  ( )    

  ( ) 

 

2.8.3 Fractional derivative operators 

The following fractional derivative operators     
  ( ) and     

     
 ( ) 

were given by Owa [39] and Raina and Nahar [47], respectively. 

Definition 2.8.3.1  

Let      , the fractional derivative operator of order   is defined by 

    
  ( )  

 

 (   )

 

  
∫

 ( )

(   ) 

 

 

                                    (       ) 

where  ( ) is analytic function in a simply-connected region of the z-plane 

containing the origin, and the multiplicity of (   )   is removed by 

requiring    (   ) to be real when         

Definition 2.8.3.2 [62] 

The Gauss hypergeometric function is denoted by    (       ) and defined 

by 

   (        )   ∑
( )  ( ) 
( )    

   

 

   

                     (   )                        

where ( )  is the Pochhammer symbol given in terms of the Gamma 

function   by 
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( )  
 (   )

 ( )
 {

                                                                    
 (   )(   ) (     )           

  

 for             .                                                                       

Definition 2.8.3.3  

Let      , and      . Then, in terms of the familiar Gauss’s 

hypergeometric function    , the generalized fractional derivative operator  

    
     

 is 

    
     

 ( )  
 

  
(

    

 (   )
  

∫ (   )  
 

 

 ( )    (              
 

 
*  )                        (       ) 

where  ( ) is analytic function in a simply-connected region of the  -plane 

containing the origin, with the order  ( )   (| | )       where   

 max*     +    and the multiplicity of (   )   is removed requiring 

log(   ) to be real when      . 

Owa and Srivastava [43] defined the fractional derivative operator by 

making use of the operator     
   ( ) given by (2.8.3.1) for  ( )  𝐴 as 

follows. 

Definition 2.8.3.4 

For  ( )  𝐴 and      , the fractional derivative operator     
  ( ) is 

defined by  

      
  ( )   (   )        

  ( )  

   ∑
 (   ) (   )

 (     )
   

   

 

   

                  (   )       (       ) 

where     
   ( ) is given by (2.8.3.1). Notice that, 

                                
  ( )   ( ),     

  ( )     ( ) 
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Motivated by Owa and Srivastava [43] and by making use of the 

operator     
     

 ( ) given by (2.8.3.2), Raina and Nahar [47] introduced the 

generalized fractional derivative operator for  ( )  𝐴 as follows.   

Definition 2.8.3.5 

For  ( )  𝐴,    ,     and    max(   )   ,  the fractional derivative 

operator     
     

 ( ) is defined by  

    
     

 ( )  
 (   ) (     )

 (     )
      

     
 ( )   

   ∑
( )   (     )   

(   )   (     )   
   

   

 

   

   (   )      (       ) 

where     
     

 ( ) is given by (2.8.3.2). Notice that, 

    
     

 ( )       
  ( )                                               

Motivated essentially by the above works, a more general fractional 

derivative operator was studied by Amsheri and Zharkova [7], [8] for 

 ( )  𝐴(𝑝) as follows. 

Definition 2.8.3.6    

For  ( )  𝐴(𝑝),       𝑝         (   )  𝑝    and 𝑝   ,  the 

fractional derivative operator     
       

  ( ) is defined by    

    
       

 ( )  
 (𝑝     ) (𝑝       )

 (𝑝   ) (𝑝       )
      

     
 ( )                             

    ∑  (      𝑝)     
   

 

   

             (   )      (       ) 

where     
     

 ( ) is given by (2.8.3.2) and 

  (      𝑝)  
(𝑝   ) (𝑝       ) 

(𝑝     ) (𝑝       ) 
           (   )      (       ) 

Notice that, 
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 ( )      
     

 ( )      
       

 ( )   ( ) and     
       

 ( )  
   ( )

 
 

Very recently, Zayed et. al. [64] defined and studied the generalized 

differential operator      
           

 ( ) for  ( )  𝐴(𝑝) based on Al-Oboudi 

differential operator and fractional derivative operator as follows. 

Definition 2.8.3.7    

For  ( )  𝐴(𝑝),      ,    ,   𝑝   ,      (   )  𝑝   ,    , 

   , 𝑝    and     
       

 ( ) is given by (2.8.3.5), the generalized 

differential operator     
           

 ( ) is defined by    

            
           

 ( )      
       

 ( )    

            
           

 ( )      
         

 ( )  

                        (   )    
       

 ( )   
 

𝑝
.    

       
 ( )/

 
 

                          ∑(
𝑝    

𝑝
*

 

   

  (      𝑝)     
    

and (in general) 

               
           

 ( )      
         

(    
             

 ( ))      

    ∑(
𝑝    

𝑝
*
  

   

  (      𝑝)     
                    

(       ) 

Similarly, for  ( )   (𝑝), we can write     
           

 ( ) in the form 

    
           

 ( )     ∑(
𝑝    

𝑝
*
  

   

  (      𝑝)     
        (      ) 

 (       ) 

where   (      𝑝) is given by (2.8.3.6). Notice that, 

              
           

 ( )      
       

 ( ),     
           

 ( )      
  ( ) 
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 ( )   ( )      
           

 ( )  
   ( )

 
 

From (2.8.3.7), we have 

  .    
           

 ( )/
 
 (𝑝   )    

                 
 ( )       

           
 ( ) 

 (       ) 

 

2.8.4 Integral operators 

The following integral operator   ( ( )) for  ( )  𝐴 was introduced 

by Bernardi [11] and known as Bernardi-Libera-Livingston integral operator. 

It generalizes the integral operator due to Libera [27] and Livingston [31]. 

Definition 2.8.4.1  

For  ( )  𝐴 and      , the integral operator   ( ( )) is defined by   

  ( ( ))  
   

  
∫     ( )

 

 

                                                                     

   ∑(
   

   
*   

   

 

   

                       (   )           (       ) 

Motivated essentially by the above works, Saitoh et. al. [57] introduced 

the generalized Bernardi-Libera-Livingston integral operator     ( ( )) for 

 ( )  𝐴(𝑝) as follows. 

Definition 2.8.4.2  

For  ( )  𝐴(𝑝),    𝑝 and 𝑝   , the integral operator     ( ( )) is 

defined by  

    ( ( ))  
  𝑝

  
∫     ( )

 

 

                                                                            

    ∑(
  𝑝

  𝑝   
*      

    

 

   

 (   )           (       ) 
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Chapter 3 

  

Fekete-Szegӧ inequalities for certain 

classes of analytic functions 

   

The main objective of this chapter is to obtain coefficient bounds  for 

the functional |          
 | of functions belonging to certain classes of 

analytic and 𝑝-valent functions defined in the open unit disk which 

generalized the concept of starlike functions.  

 

3.1   Introduction and preliminaries 

Let   is the class of all analytic functions with a positive real part in the 

open unit disk defined by  

𝑝( )    ∑   
 

 

   

                   

with 𝑝( )    and   𝑝( )   ,    . It is well-known that |   |    

(       ) [46]. 

In 1933, Fekete and Szegö obtained the sharp bound for |      
 | as 

a function of the real parameter   and proved that 

       |      
 |        ( 

  

   
*            (     )                  

for functions in the class   [13]. Later, the problem of finding sharp bound for 

the functional |      
 | of any compact family of functions  ( )  𝐴 is 

known as the Fekete-Szegö problem or inequality.  

In 1994, Ma and Minda [32] gave an unified treatment of various 

subclasses consisting of starlike and convex functions for which either the 
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quantity    ( )  ( )⁄  or       ( )   ( )⁄  is subordinate to a more general 

superordinate function which defined as follows.   

Definition 3.1.1 

Let  ( ) be an univalent starlike function with respect to 1 which maps the 

open unit disk   onto a region in the right half-plane and symmetric with 

respect to the real axis such that  ( )    and   ( )   . A function 

 ( )    is said to be in the class   ( ) if 

   ( )

 ( )
  ( )                             (   )                        (     ) 

and  ( ) be the class of functions  ( )    for which 

  
    ( )

  ( )
  ( )                        (   )                        (     ) 

A function  ( )    ( ) is said to be starlike with respect to the function  , 

and a function  ( )   ( ) is said to be convex with respect to the function 

 . 

For these classes, the estimates for the first few coefficients and Fekete-

Szegö inequalities have been obtained [32]. 

Following Ma and Minda [32], Ravichandran et. al. [49] defined a 

more general classes related to the classes of starlike and convex functions of 

complex order as follows.  

Definition 3.1.2 

Let  ( ) be an univalent starlike function with respect to 1 which maps the 

open unit disk   onto a region in the right half-plane and symmetric with 

respect to the real axis such that  ( )    and   ( )   . A function 

 ( )  𝐴 is said to be in the class   
 ( ) if 

  
 

 
(
   ( )

 ( )
  )   ( )                 (   )               (     ) 

and   ( ) be the class of functions  ( )  𝐴 for which 
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    ( )

  ( )
  ( )                            (   )               (     ) 

where     * +. 

Notice that, for    , the class   
 ( ) is the class   ( ) and the class 

  ( ) is the class  ( ). 

For the classes   
 ( ) and   ( ), the necessary and sufficient 

conditions for functions to belong to these classes and Fekete-Szegö 

inequalities have been obtained [49]. 

In this chapter, motivated by a-fore-mentioned works and by linear 

operators which were studied by [8], [48] and others, Fekete-Szegö 

inequalities for well-known classes of 𝑝-valent functions are obtained. 

Furthermore, a new class of  𝑝-valent functions associated with generalized 

differential operator is introduced and Fekete-Szegö inequalities are obtained.  

Now, in order to prove the results in the current chapter, the following 

lemma given by Ali et. al. [2] is needed. 

Lemma 3.1.3  

If  ( )   , then 

|      
 |  {

                                   
                            
                                      

 

when      or    , the equality holds if and only if  ( )    or one of its 

rotations. If       , then equality holds if and only if  ( )     or one 

of its rotations. Equality holds for      if and only if  ( )   
   

    
 ,   

    or one of its rotations, while for    , the equality holds if and only 

if   ( )    
   

    
 ,       or one of its rotations. Although the above 

upper bound is sharp, it can be improved as follows when       : 

|      
 |  (   )|  |

             (      ) 

and 
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|      
 |  (   )|  |

                 (     ) 

Further, the following lemma given by Keogh and Merkes [26] is 

needed as well. 

Lemma 3.1.4 

If  ( )   , then for any complex number  ,  

|      
 |     (  | |) 

The result is sharp for the functions  ( )    or  ( )    . 

  

3.2   Certain class of  -valent functions 

In 2007, Ali et. al. [2] extended the classes   ( ) and  ( ) of 

univalent functions which were introduced by Ma and Minda [32] as well as 

the classes   
 ( ) and   ( ) of univalent functions of complex order which 

were defined by Ravichandran et. al. [49] to more general classes of 𝑝-valent 

functions in order to obtain Fekete-Szegö inequalities. Authors [2] have 

defined the class     
 ( ) of 𝑝-valent functions of complex order with respect 

to the function   as follows.  

Definition 3.2.1 

Let  ( ) be an univalent starlike function with respect to 1 which maps the 

open unit disk   onto a region in the right half-plane and symmetric with 

respect to the real axis such that  ( )    and   ( )   . A function 

 ( )  𝐴(𝑝) is said to be in the class     
 ( ) if 

  
 

 
(
   ( )

𝑝 ( )
  )   ( )               (   )               (     ) 

where     * + and 𝑝   . Further, let     
 ( )    

 ( ).  

It may be noted that the class     
 ( ) extends the class of starlike 

functions for suitable choice of   and 𝑝. In particular, for 𝑝   , the a-fore-

mentioned class reduces to the class   
 ( ) which was introduced and studied 
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by Ravichandran et. al. [49]. For     and 𝑝   , it reduces to the class 

  ( ) which was introduced by Ma and Minda [32]. 

Now, by making use of the Lemma 3.1.3 and Lemma 3.1.4, the 

coefficient bounds for functions belonging to the class   
 ( ) according to Ali 

et. al. [2]  are obtained as follows. 

Theorem 3.2.2 

Let  ( )           
      where    are real with          , 

and 

   
      𝑝  

 

 𝑝  
                                                                            

    
      𝑝  

 

 𝑝  
                                                                            

    
   𝑝  

 

 𝑝  
                                                       

If  ( )  𝐴(𝑝) belongs to   
 ( ), then  

|          
 |  

{
 
 

 
 
𝑝

 
 (   (    )𝑝  

 )                           

𝑝  
 
                                                       

 
𝑝

 
 (   (    )𝑝  

 )                       

          (     ) 

Further, if        , then 

|          
 |  

 

 𝑝  
(  

  
  
 (    )𝑝  * |    | 

  
𝑝  
 
      (     ) 

If        , then 

|          
 |  

 

 𝑝  
(  

  
  
 (    )𝑝  * |    | 

  
𝑝  
 
       (     ) 

For any complex number    
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|          
 |  

𝑝  
 
   {  |

  
  
 (    )𝑝  |}             (     ) 

The results are sharp. 

Proof  

If  ( )    
 ( ), then there is a Schwarz function  

   ( )         
                       

such that  

   
   ( )

𝑝 ( )
  ( ( ))                                                            (     ) 

since  

               
   ( )

𝑝 ( )
   

 

𝑝
      

 

𝑝
[          

 ]     

we have from (3.2.6), 

      𝑝                                                                       (     ) 

and 

     
 

 
 *𝑝     𝑝(   𝑝  

 )  
 +                        (     ) 

Using (3.2.7) and (3.2.8), we have 

                              
  

𝑝  
 
 *      

 +                                

where 

    𝑝(    )   
  
  
                                                                   

The result (3.2.2)-(3.2.4) are established by an application of Lemma 3.1.3 

and  the inequality (3.2.5) by Lemma 3.1.4. To show that the bounds in 

(3.2.2)-(3.2.4) are sharp, we define the functions     (       ) by 
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 ( )

𝑝   ( )
  (    )                       .   ( )  (   )

 
( )     /        

and the functions   ,     (     ) defined by 

 
   

 ( )

𝑝  ( )
  (

 (   )

    
*                        (  ( )    

 ( )      )           

and 

   
 ( )

𝑝  ( )
  ( 

 (   )

    
*                    (  ( )    

 ( )     )           

clearly the functions       ,      
 ( )  If      or     , then the 

equality holds if and only if   is     or one of its rotations. If        , 

then the equality holds if and only if   is     or one of its rotations. If   

  , then the equality holds if and only if   is    or one of its rotations. If 

    , then the equality holds if and only if   is    or one of its rotations. 

Remark 3.2.1 

Letting 𝑝    in Theorem 3.2.2, the following result due to Ma and Minda 

[32] is obtained. 

Corollary 3.2.3 

Let  ( )           
      where    are real with          , 

and 

   
        

 

   
                                                                           

    
        

 

   
                                                                            

If  ( )    belongs to   ( ), then  

|      
 |  

{
 
 

 
 

   (     )  
 

 
                          

  
 
                                                        

 
   (     )  

 

 
                              

              (     ) 



45 
 

3.3 Certain class of  -valent functions associated with   

         fractional derivative operator                  

This section refers to some applications of the generalized fractional 

derivative operator     
       

 ( ) defined by (2.8.3.5) in order to obtain 

Fekete-Szegö inequalities. In 2012, Amsheri and Zharkova [8] extended the 

classes     
 ( ) [2],   

 ( ) [49] and   ( ) [32] to more general class of 𝑝-

valent functions of complex order associated with the operator     
       

 ( ). 

Authors [8] have defined the class           
 ( ) of 𝑝-valent functions of 

complex order with respect to the function   as follows. 

Definition 3.3.1 

Let  ( ) be an univalent starlike function with respect to 1 which maps the 

open unit disk   onto a region in the right half-plane and symmetric with 

respect to the real axis such that  ( )    and   ( )   . A function 

 ( )  𝐴(𝑝) is said to be in the class           
 ( ) if 

  
 

 
(
    
             

 ( )

    
       

 ( )
  +   ( )       (   )            (     ) 

where    ,    𝑝   ,      (   )  𝑝   ,     * + and 𝑝   . 

Further, let           
 ( )          

 ( )   

The above class           
 ( ) is of special interest and it contains many 

well-known classes of analytic functions. In particular, for   𝑝    

and     0, the a-fore-mentioned class reduces to the class    ( ) which 

was investigated by Ma and Minda [32]. For 𝑝    and     0, it reduces 

to the class   
  ( ) which was studied by Ravichandran et. al. [49]. For     

and     0, it reduces to the class   
 ( ) which was studied by Ali et. al. 

[2]. 
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Now, by making use of Lemma 3.1.3 and Lemma 3.1.4, the coefficient 

bounds for functions belonging to the class         
 ( )  according to Amsheri 

and Zharkova [8] are obtained as follows.   

Theorem 3.3.2   

                𝑝       max(   )  𝑝    and 𝑝   . Further, 

let  ( )           
      where    are real with          , 

and 

   
(     )  

  (𝑝   )  
   

 

     
 (𝑝   )

                                                        

   
(     )  

  (𝑝   )  
   

 

     
 (𝑝   )

                                                        

   
    

   (𝑝   )  
   

 

     
 (𝑝   )

                                                                     

If  ( )  𝐴(𝑝) belongs to         
 ( ), then  

|          
 |  

{
  
 

  
 
(𝑝   )

   
 (   

(𝑝   )(       
 )

  
   

 )          

(𝑝   )  
   

                                                             

 
(𝑝   )

   
(   

(𝑝   )(       
 )

  
   

 )          

 

(     ) 

Further, if        , then 

  |          
 |  

  
 

     (𝑝   )
 

 (  
  
  
 
(𝑝   )(       

 )

  
   ) |    | 

  
(𝑝   )  

   
         (     ) 

If        , then 
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|          
 |  

  
 

     (𝑝   )
 

 (  
  
  
 
(𝑝   )(       

 )

  
   ) |    | 

  
(𝑝   )  

   
           (     ) 

For any complex number  ,  

|          
 |  

(𝑝   )  
   

   ,  |
(𝑝   )(       

 )

  
    

  
  
|- 

(     ) 

The results are sharp. 

Proof   

If  ( )          
 ( ), then there is a Schwarz function  

      ( )         
           

such that  

      
    
             

 ( )

    
       

 ( )
  ( ( ))                                        (     ) 

since  

 
    
             

 ( )

    
       

 ( )
   

  
𝑝   

      
 

𝑝   
[          

     
 ]    

          

we have from (3.3.6) 

      
(𝑝   )  

  
                                                                (     ) 

and 

     
(𝑝   )

   
 *     (   (𝑝   )  

 )  
 +              (     ) 

Therefore, we have 
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(𝑝   )  
   

 *      
 +                                         

where 

    
(𝑝   )  (       

 )

  
  

  
  
                                                      

The results (3.3.2)-(3.3.4) are established by an application of Lemma 3.1.3 

and inequality (3.3.5) by Lemma 3.1.4. To show that the bounds in (3.3.2)-

(3.3.4) are sharp, we define the functions    ( ) (       ) by 

    
     

             
   ( )

    
       

   ( )
  (    )              .   ( )  (   )

 
( )     / 

and the functions        (     ) defined by 

     
    
             

  ( )

    
       

  ( )
  (

 (   )

    
*                      (  ( )    

 ( )     ) 

and 

    
    
             

  ( )

    
       

  ( )
  ( 

 (   )

    
*                 (  ( )    

 ( )     ) 

respectively, it is clear that the functions        and    belong to the class 

        
 ( )  If      or     , then the equality holds if and only if   is  

    or one of its rotations. If        , the equality holds if and only if   

is     or one of its rotations. If     , then the equality holds if and only if 

  is    or one of its rotations. If     , then the equality holds if and only if  

  is    or one of its rotations. 

Remark 3.3.1 

By taking       in Theorem 3.3.2, Theorem 3.2.2 due to Ail et. al. [2] is 

obtained. 

Remark 3.3.2 

By taking       and 𝑝    in Theorem 3.3.2, Corollary 3.2.3 due to Ma 

and Minda [32] is obtained. 
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In the similar manner, the coefficient bound for |          
 | of 

functions in the class           
 ( ) [8] is given as follows.   

Theorem 3.3.3  

                𝑝       max(   )  𝑝    𝑝     Further, let 

 ( )           
      where    are real with      and     . If 

 ( )  𝐴(𝑝) belongs to           
 ( ), then for any complex number  , we 

have 

|          
 |  

(𝑝   )| |  
   

   ,  |
(𝑝   ) (       

 )

  
    

  
  
|- 

(     ) 

The result is sharp. 

Remark 3.3.3 

By taking       and 𝑝    in Theorem 3.3.3, the corresponding result 

due to Ravichandran et. al. [49] is obtained. 

 

3.4 Certain class of  -valent functions associated with  

         generalized differential operator  

Motivated by the a-fore-mentioned works in the current chapter, a new 

class             
 ( ) of 𝑝-valent starlike functions of complex order associated 

with generalized differential operator     
           

 ( ) defined by (2.8.3.7) is 

introduced and Fekete-Szegö inequalities are obtained according to Amsheri 

and Abouthfeerah [4].   

Definition 3.4.1 

Let  ( ) be an univalent starlike function with respect to 1 which maps the 

open unit disk   onto a region in the right half-plane and symmetric with 

respect to the real axis such that  ( )    and   ( )   . A function 

 ( )  𝐴(𝑝) is said to be in the class             
 ( ) if 
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(
    
                 

 ( )

    
           

 ( )
  +   ( )         (   )        (     )    

where     ,    ,    𝑝   ,      (   )  𝑝   ,    ,     * + 

and 𝑝   . Further, let             
 ( )            

 ( )   

The above class             
 ( ) is of special interest and it contains 

many well-known classes of analytic functions. In particular, for   𝑝    

and       0, the a-fore-mentioned class reduces to the class   ( ) 

which was investigated by Ma and Minda [32]. For 𝑝    and       0, 

it reduces to the class   
 ( ) which was studied by Ravichandran et. al. [49]. 

For     and       0, it reduces to the class   
 ( ) which was studied 

by Ali et. al. [2]. Furthermore, when    , it reduces to the class 

          
 ( ) which was introduced by Amsheri and Zharkova [8].         

Now, by making use of Lemma 3.1.3 and Lemma 3.1.4, the coefficient 

bounds for functions belonging to the class           
 ( ) [4] are obtained as 

follows.   

Theorem 3.4.2 

Let      ,     ,    ,   𝑝   ,    max(   )  𝑝   ,    and 

𝑝   . Further, let  ( )           
      where    are real with 

         , and 

   
,      (𝑝   )  

 -  
 (
𝑝   
𝑝 *

  

     
 (𝑝   ) (

𝑝    
𝑝 *

                                    

   
,      (𝑝   )  

 -  
 (
𝑝   
𝑝 *

  

     
 (𝑝   ) (

𝑝    
𝑝 *
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,   (𝑝   )  

 -  
 (
𝑝   
𝑝 *

  

     
 (𝑝   ) (

𝑝    
𝑝 *

                                             

If  ( )  𝐴(𝑝) belongs to           
 ( ), then  

|          
 |  

{
 
 
 
 

 
 
 
  

(𝑝   )  

   (
𝑝    
𝑝 *

                               

(𝑝   )  

   (
𝑝    
𝑝 *

                                

(𝑝   )  

   (
𝑝    
𝑝 *

                                       

          (     ) 

Further, if        , then 

|          
 |  

  
 (
𝑝   
𝑝 *

  

     (𝑝   ) (
𝑝    
𝑝 *

 (   )|    | 
                             

    
(𝑝   )  

   (
𝑝    
𝑝 *

                                                               (     ) 

If        , then 

|          
 |  

  
 (
𝑝   
𝑝 *

  

     (𝑝   ) (
𝑝    
𝑝 *

  (   )|    | 
                        

 
(𝑝   )  

   (
𝑝    
𝑝 *

                                                              (     ) 

where 
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(𝑝   )  (    (
𝑝    
𝑝 *

 

   
 (
𝑝   
𝑝 *

  

)

  
 (
𝑝   
𝑝 *

   
  
  
                         

for any complex number  , 

|          
 |  

(𝑝   )  

   (
𝑝    
𝑝 *

    *  | |+                              (     ) 

The results are sharp. 

Proof 

If  ( )            
 ( ), then there is a Schwarz function  

   ( )         
                      

such that  

 
    
                 

 ( )

    
           

 ( )
  ( ( ))                                 (     ) 

since  

 
    
                 

 ( )

    
           

 ( )
   

  
𝑝   

(
𝑝   

𝑝
*
 

          

                         
 

𝑝   
*   (

𝑝    

𝑝
*
 

       
 (
𝑝   

𝑝
*
  

    
 +      

we have from (3.4.6), 

      
(𝑝   )  

  (
𝑝   
𝑝 *

                                                                   (     ) 

and 

     
(𝑝   )

   (
𝑝    
𝑝 *

  *     (   (𝑝   )  
 )  

 +     (     ) 
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Therefore, we have 

          
  

(𝑝   )  

   (
𝑝    
𝑝 *

  *      
 +                                    

where 

    

(𝑝   )  (    (
𝑝    
𝑝 *

 

   
 (
𝑝   
𝑝 *

  

)

  
 (
𝑝   
𝑝 *

   
  
  
                

The results (3.4.2)-(3.4.4) are established by an application of Lemma 3.1.3 

and inequality (3.4.5) by Lemma 3.1.4. To show that the bounds in (3.4.2)-

(3.4.4) are sharp, we define the functions      (       ) by 

    
                 

   ( )

    
           

   ( )
  (    )        .   ( )  (   )

 
( )     / 

and the functions         (     ) defined by 

 
    
                 

  ( )

    
           

  ( )
  (

 (   )

    
*                 (  ( )    

 ( )     ) 

and 

    
                 

  ( )

    
           

  ( )
  ( 

 (   )

    
*           (  ( )    

 ( )     ) 

respectively, it is clear that the functions        and    belong to the class 

          
 ( ). If      or     , then the equality holds if and only if   is  

    or one of its rotations. If        , the equality holds if and only if   

is     or one of its rotations. If     , then the equality holds if and only if  

  is    or one of its rotations. If     , then the equality holds if and only if  

  is    or one of its rotations. 
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Remark 3.4.1 

By taking     in Theorem 3.4.2, Theorem 3.3.2 due to Amsheri and 

Zharkove [8] is obtained. 

Remark 3.4.2 

By taking       and     in Theorem 3.4.2, Theorem 3.2.2 due to Ail 

et. al. [2] is obtained. 

Remark 3.4.3 

By taking         and 𝑝    in Theorem 3.4.2, Corollary 3.2.3 due to 

Ma and Minda [32] is obtained. 

In the similar manner, the coefficient bound for |          
 | of 

functions in the class             
 ( ) [4] is obtained as follows.   

Theorem 3.4.3 

Let      ,     ,    ,   𝑝   ,    max(   )  𝑝   ,    and 

𝑝   . Further, let  ( )           
      where   ُ  are real with 

     and     . If  ( )  𝐴(𝑝) belongs to             
 ( ), then for any 

complex number  , we have  

|          
 |  

(𝑝   )| |  

   (
𝑝    
𝑝 *

    *  | |+                     (     ) 

where 

           

(𝑝   )   (    (
𝑝    
𝑝 *

 

   
 (
𝑝   
𝑝 *

  

)

  
 (
𝑝   
𝑝 *

   
  
  
  

The result is sharp. 

Proof 

If  ( )              
 ( ), then there is a Schwarz function  

   ( )         
                       

such that  
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( 
    
                 

 ( )

    
           

 ( )
  +   ( ( ))                                (      ) 

since  

    
 

 
( 
    
                 

 ( )

    
           

 ( )
  +    

  
 (𝑝   )

(
𝑝   

𝑝
*
 

      

                   
 

 (𝑝   )
*   (

𝑝    

𝑝
*
 

       
 (
𝑝   

𝑝
*
  

    
 +      

we have from (3.4.10), 

      
 (𝑝   )  

  (
𝑝   
𝑝 *

                                                                      (      ) 

and 

     
 (𝑝   )

   (
𝑝    
𝑝 *

  *     (    (𝑝   )  
 )  

 +           (      ) 

Therefore, we have 

          
  

 (𝑝   )  

   (
𝑝    
𝑝 *

  *      
 +                                                 

where 

  

(𝑝   )   (    (
𝑝    
𝑝 *

 

   
 (
𝑝   
𝑝 *

  

)

  
 (
𝑝   
𝑝 *

   
  
  
                  

The result (3.4.9) is established by an application of Lemma 3.1.4. To show 

that the bound in (3.4.9) is sharp, we define the functions     (       ) 

by 

  
 

 
(
    
                 

   ( )

    
           

   ( )
  +   (    )           
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where    ( )  (   )
 
( )     . It is clear that the functions     belong 

to the class             
 ( ), then the equality holds if and only if  ( ) is     or 

     

Remark 3.4.4 

By taking     in Theorem 3.4.3, Theorem 3.3.3 due to Amsheri and 

Zharkove [8] is obtained. 

Remark 3.4.5 

By taking         and 𝑝    in Theorem 3.4.3, the corresponding 

result due to Ravichandran et. al. [49] is obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

Chapter 4 

  

Starlikeness and convexity conditions of 

analytic functions 

 

The main objective of the present chapter is to obtain starlikeness and 

convexity conditions of analytic and 𝑝-valent functions defined in the open 

unit disk.  

    

4.1 Introduction and preliminaries      

In this section, some known results on starlikeness and convexity of 

analytic and univalent functions are collected. There are many works on the 

sufficient conditions for starlikeness and convexity of analytic functions, for 

example [7], [20], [21], [22], [41], [43], [47], [54] and others. In 1975, 

Silverman [60] proved the following coefficient conditions of functions 

 ( )  𝐴, that are sufficient for these functions to be in the class   ( ) or the 

class  ( ) for      , respectively. 

Lemma 4.1.1 

Let       and the function  ( )  𝐴. If  ( ) satisfies     

∑(   )|  |      

 

   

                     (   )                   (     ) 

 Then  ( )    ( )   

Lemma 4.1.2 

Let       and the function  ( )  𝐴. If  ( ) satisfies     

∑ (   )|  |      

 

   

                 (   )                   (     ) 
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Then  ( )   ( )   

The fractional operator has gained much attention by many authors 

because of its interesting application. Owa and Shen [41] extended the above 

conditions (4.1.1) and (4.1.2) for functions  ( )  𝐴 involving the fractional 

derivative operator     
  ( ) given by (2.8.3.3) in order to be in the class 

  ( ) or the class  ( ) for      , as follows. 

Lemma 4.1.3 

Let           and the function  ( )  𝐴. If  ( ) satisfies         

 ∑
   

   
|  |   

   

 

 

   

                        (   )                   (     ) 

Then     
  ( )    ( )  

Lemma 4.1.4 

Let           and the function  ( )  𝐴. If  ( ) satisfies   

 ∑
 (   )

   
|  |   

   

 

 

   

                  (   )                   (     ) 

Then     
  ( )   ( )  

Furthermore, by using the fractional derivative operator     
     

 ( ) 

given by (2.8.3.4) for functions  ( )  𝐴, Raina and Nahar [47] generalized 

the a-fore-mentioned results (4.1.1)-(4.1.4) that deal with starlikeness and 

convexity as follows. 

Lemma 4.1.5 

Let  ,  , η     such that    ,    ,    (   )       .  
 

 
/ and 

     . Also, let the function  ( )  𝐴. If  ( ) satisfies   

 ∑
   

   
|  |   

(   )(     )

 (     )

 

   

                  (   )              (     ) 
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Then     
     

 ( )    ( )  

Lemma 4.1.6 

Let  ,  , η     such that    ,    ,    (   )       .  
 

 
/ and 

     . Also, let the function  ( )  𝐴. If  ( ) satisfies   

 ∑
 (   )

   
|  |   

(   )(     )

 (     )

 

   

           (   )              (     ) 

Then     
     

 ( )   ( )  

In 1973, Ruscheweyh and Sheil-Small [54] proved the following 

important property of analytic functions by using the technique of 

convolution. 

Lemma 4.1.7 

Let  ( ) and  ( ) be analytic functions in   and satisfy  ( )   ( )   , 

  ( )   ,   ( )   . Also, let 

 ( )  {
     

    
 ( )}                     (    * +)            (     ) 

for   and   on the unit circle. Then for a function  ( ) analytic in   such that 

   * ( )+    satisfies the inequality  

  {
(    )( )

(   )( )
}                                   (   )              (     ) 

Many known results on starlikeness and convexity were obtained by 

using Lemma 4.1.7. For example, Owa and Shen [41]  proved the following 

results for the fractional derivative operator     
  ( ) of functions  ( )  𝐴. 

Lemma 4.1.8 

Let    ,       and the function  ( )  𝐴 be in the class   ( ). If 

 ( ) satisfies 

 ( )  {
     

    
 ( )}                     (    * +)                           
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for each   and   on the unit circle, where 

 ( )    ∑
 (   ) (   )

 (     )
  

 

   

                                   (     ) 

Then     
  ( )    ( ). 

Lemma 4.1.9 

Let           and the function  ( )  𝐴 be in the class  ( ). If 

 ( ) satisfies 

 ( )  {
     

    
   ( )}                 (    * +)                           

for each   and   on the unit circle and  ( ) is given by (4.1.9). Then  

    
  ( )   ( ). 

Also, Raina and Nahar [47] used Lemma 4.1.7 to prove the following 

results which deal with starlikeness and convexity conditions for the 

fractional derivative operator     
     

 ( ) of functions  ( )  𝐴. 

Lemma 4.1.10 

Let  ,  , η     such that    ,    ,    (   )       .  
 

 
/ 

and      . Also, let the function  ( )  𝐴 be in the class   ( ). If  ( ) 

satisfies 

 ( )  {
     

    
 ( )}                         (    * +)                        

for each   and   on the unit circle, where 

 ( )    ∑
( )   (     )   

(   )   (     )   
  

 

   

                  (      ) 

Then     
     

 ( )    ( ). 

Lemma 4.1.11 

Let  ,  , η     such that    ,    ,    (   )       .  
 

 
/ and 

     . Also, let the function  ( )  𝐴 be in the class  ( ). If  ( ) 

satisfies 
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 ( )  {
     

    
   ( )}                     (    * +)                        

for each   and   on the unit circle and  ( ) is given by (4.1.10). Then 

    
     

 ( )   ( ). 

Next, the following results due to Jack [23] and Nunokawa [38] 

(Lemma 4.1.12 and Lemma 4.1.13 below ) which are popularly known as 

Jackʼs Lemma and Nonokawaʼs Lemma, respectively in the literature have 

been applied in proving many results on starlikeness and convexity of analytic 

functions. 

Lemma 4.1.12 

Let  ( ) be non-constant and analytic function in   with  ( )   . If 

| ( )| attains its maximum value on the circle | |          at the point 

  , then    
 (  )    (  ), where    . 

Lemma 4.1.13 

Let 𝑝( ) be an analytic function in   with 𝑝( )   . If there exists a point 

     such that  

       *𝑝( )+       (| |  |  |)       *𝑝(  )+       𝑝(  )          

then 

𝑝(  )                
  𝑝 (  )

𝑝(  )
  

 

 
(  

 

 
*         

where     and    . 

By making use of these results, Irmak and Piejko [21] investigated the 

following conditions for starlikeness and convexity of functions  ( )  𝐴 . 

Lemma 4.1.14 

Let            and the function  ( )  𝐴 . 

1. If  

           ,
    ( )

  ( )
 
   ( )

 ( )
-  

 (   )

 (   )
                                    (      ) 
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then 

        ,
   ( )

 ( )
-  

   

 
                                                              (      ) 

2. If  

    ,
    ( )

  ( )
 
   ( )

 ( )
-                                                     (      ) 

then 

  ,
   ( )

 ( )
-                                                                         (      ) 

Lemma 4.1.15 

Let           and the function  ( )  𝐴 .  

1. If  

  ,
      ( )       ( )

    ( )    ( )
 
    ( )

  ( )
-  

   

 (   )
           (      ) 

then 

  ,  
    ( )

  ( )
-  

   

 
                                                     (      ) 

2. If  

  ,
      ( )       ( )

    ( )    ( )
 
    ( )

  ( )
-                             (      ) 

then 

  ,  
    ( )

  ( )
-                                                                 (      ) 

In this chapter, motivated by a-fore-mentioned works, some known 

starlikeness and convexity conditions of 𝑝-valent functions are studied. 

Moreover, various new results that deal with the starlikness and convexity of 

𝑝-valent functions associated with generalized linear operator are also 

obtained. 
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4.2    Conditions for  -valent functions   

Motivated by the work of Silverman [60], Owa [40] proved the 

following sufficient coefficient conditions for functions  ( )  𝐴(𝑝) to be in 

the class   (𝑝  ) or the class  (𝑝  ) for     𝑝 and 𝑝   . 

Theorem 4.2.1 

Let     𝑝, 𝑝    and the function  ( )  𝐴(𝑝) . If  ( ) satisfies 

∑(𝑝     )|    |

 

   

 𝑝                                (   )            (     ) 

Then  ( )    (𝑝  )  

Theorem 4.2.2 

Let     𝑝, 𝑝    and the function  ( )  𝐴(𝑝). If  ( ) satisfies 

∑(𝑝   )(𝑝     )|    |

 

   

 𝑝(𝑝   )         (   )            (     ) 

Then  ( )   (𝑝  )  

Next, by using the fractional derivative operator     
       

 ( ) given by 

(2.8.3.5) of functions  ( )  𝐴(𝑝), Amsheri and Zharkova [7] obtained the 

sufficient conditions for starlikeness and convexity, which generalize the 

works by [40], [41],[47] and [60] as follows. 

Theorem 4.2.3 

Let  ,  , η     such that    ,   𝑝   ,    (   )  𝑝      

 .  
   

 
/,     𝑝 and 𝑝     Also, let the function  ( )  𝐴(𝑝). If 

 ( ) satisfies   

 ∑
𝑝     

𝑝   
|    |   

(𝑝     )(𝑝       )

(𝑝   )(𝑝       )
 

 

   

      (   )                   

 (     ) 

Then     
       

 ( )    (𝑝  )  
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Proof 

We have from (2.8.3.5) 

    
       

 ( )     ∑  (      𝑝)     
   

 

   

                                      

we observe that the function   (      𝑝) defined by (2.8.3.6) satisfies the 

inequality    (      𝑝)       (      𝑝)     , provided that   

 .  
   

 
/. Thereby, showing that   (      𝑝) is non-increasing. Thus 

under the hypothesis of the theorem, we have 

  (      𝑝)    (      𝑝)  
(𝑝   )(𝑝       )

(𝑝     )(𝑝       )
         (     ) 

Therefore, (4.2.3) and (4.2.4) yields  

 ∑
𝑝     

𝑝   
  (      𝑝)|    |

 

   

                                      

              (      𝑝)∑
𝑝     

𝑝   
|    |

 

   

                                 

Hence, by Lemma 4.2.1, we conclude that     
       

 ( )    (𝑝  )  

Theorem 4.2.4 

Let  ,  , η     such that    ,   𝑝   ,    (   )  𝑝      

 .  
   

 
/,     𝑝 and 𝑝     Also, let the function  ( )  𝐴(𝑝). If 

 ( ) satisfies 

∑
(𝑝   )(𝑝     )

𝑝(𝑝   )
|    |   

(𝑝     )(𝑝       )

(𝑝   )(𝑝       )

 

   

       (   )  

(     ) 

Then     
       

 ( )   (𝑝  )  
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Proof 

From (4.2.5) and (4.2.4), we have 

                 ∑
(𝑝   )(𝑝     )

𝑝(𝑝   )
  (      𝑝)|    |

 

   

 

                     (      𝑝)∑
(𝑝   )(𝑝     )

𝑝(𝑝   )
|    |

 

   

                  

Hence, by Lemma 4.2.2, we conclude that     
       

 ( )   (𝑝  )  

Next, by applying Lemma 4.1.7, starlikeness and convexity conditions 

for functions  ( )  𝐴(𝑝) involving the fractional derivative operator 

    
       

 ( ) in terms of convolution were obtained by Amsheri and Zharkova 

[7] as follows. 

Theorem 4.2.5  

Let  ,  , η     such that     ,   𝑝   ,    (   )  𝑝      

 .  
   

 
/,     𝑝 and 𝑝      Also, let the function  ( )  𝐴(𝑝) be in 

the class   (𝑝  ). If  ( ) satisfies 

 ( )  {
     

    
 ( )}                       (    * +)                 

 for each   and   on the unit circle, where 

 ( )     ∑
(𝑝   ) (𝑝       ) 

(𝑝     ) (𝑝       ) 
    

 

   

             (     ) 

Then     
       

 ( )    (𝑝  ). 

Proof 

Using (2.8.3.5) and (4.2.6), we have 

                    
       

 ( )     ∑  (      𝑝)     
    

 

   

       

 (   )( )                                                                (     ) 
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By setting  ( )   ( ),  ( )   ( ) and  ( )  
   ( )

 ( )
   in Lemma 

4.1.7, we find with the help of (4.2.7) that 

       ,
(    )( )

(   )( )
-                 

   ,
(     )( )

(   )( )
-           

        ,
 (   ) ( )

(   )( )
-                

          {
 .    

       
 ( )/

 

    
       

 ( )
}         

       
       

 ( )    (𝑝  )               

and the proof is complete. 

Theorem 4.2.6 

Let  ,  , η     such that     ,   𝑝   ,    (   )  𝑝      

 .  
   

 
/,     𝑝 and 𝑝     Also, let the function  ( )  𝐴(𝑝) be in 

the class  (𝑝  ). If  ( ) satisfies 

 ( )  {
     

    
   ( )}               (    * +)                            

for each   and   on the unit circle and  ( ) is given by (4.2.6). Then 

    
       

 ( )   (𝑝  ).  

Proof 

Using (2.8.3.5) and Theorem 4.2.5, we observe that 

             ( )   (𝑝  )  
   ( )

𝑝
   (𝑝  )           
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(
   ( )

𝑝
)    (𝑝  )              

           (  
   

𝑝
) ( )    (𝑝  )                     

               
 (   ) ( )

𝑝
   (𝑝  )                            

     (   )( )   (𝑝  )                        

                  
       

 ( )   (𝑝  )                            

and the proof is complete. 

 

4.3 Conditions for  -valent functions associated with    

         generalized differential operator 

Motivated by a-fore-mentioned works in the current chapter, various 

new sufficient conditions for starlikeness and convexity of functions  ( )  

𝐴(𝑝) associated with generalized differential operator     
           

 ( ) given 

by (2.8.3.7) are investigated according to Amsheri and Abouthfeerah [5]. 

The first characterization property for starlikeness of the operator 

    
           

 ( ) is given as follows.   

Theorem 4.3.1  

Let     ,       𝑝       max(   )  𝑝       ,     𝑝 and 

𝑝   . Also, let the function     
           

 ( ) defined by (2.8.3.7). If 

    
           

 ( ) satisfies 

∑(𝑝     ) (
𝑝    

𝑝
*
 

  (      𝑝)|    |

 

   

  𝑝                 (     ) 

where   (      𝑝) is given by (2.8.3.6). Then     
           

 ( )    (𝑝  ). 
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Proof  

It is sufficient to show that the values of 
 .    

           
 ( )/

 

    
           

 ( )
 lie in a circle 

centered at   𝑝 whose radius is (𝑝   ). Then we obtain 

|
 .    

           
 ( )/

 

    
           

 ( )
 𝑝|  |

∑ (
𝑝    
𝑝 *

 

  (      𝑝)      
    

   

   ∑ (
𝑝    
𝑝 *

 

  (      𝑝)     
    

   

| 

 
∑ (

𝑝    
𝑝 *

 

  (      𝑝) |    |
 
   | | 

  ∑ (
𝑝    
𝑝 *

 

  (      𝑝)|    || |
  

   

      

 
∑ (

𝑝    
𝑝 *

 

  (      𝑝) |    |
 
   

  ∑ (
𝑝    
𝑝 *

 

  (      𝑝)|    |
 
   

              

The last expression is bounded above by (𝑝   ), if 

            ∑ (
𝑝    

𝑝
*
 

  (      𝑝) |    |

 

   

 

      (𝑝   ) [  ∑(
𝑝    

𝑝
*
 

  (      𝑝)|    |

 

   

]                            

But the inequality is equivalent to (4.3.1) and true by hypothesis. Hence, 

    
           

 ( )    (𝑝  )   

In the similar manner, the characterization property for convexity of the 

operator     
           

 ( ) can be proved as follows. 

Theorem 4.3.2 

Let             𝑝       max(   )  𝑝   ,    ,     𝑝 and 

𝑝   . Also, let the function     
           

 ( ) defined by (2.8.3.7). If 

    
           

 ( ) satisfies 
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       ∑ (𝑝   )(𝑝     ) (
𝑝    

𝑝
*
 

  (      𝑝)|    |

 

           

  𝑝(𝑝   )   

 (     ) 

where   (      𝑝) is given by (2.8.3.6).Then     
           

 ( )   (𝑝  )  

Proof 

It is sufficient to show that the values of 
 .    

           
 ( )/

  

.    
           

 ( )/
  lie in a circle 

centered at   𝑝    whose radius is (𝑝   ). Then we obtain 

  |
 .    

           
 ( )/

  

.    
           

 ( )/
    𝑝 | 

               |
∑ (

𝑝    
𝑝 *

 

  (      𝑝) (𝑝   )     
        

   

𝑝     ∑ (
𝑝    
𝑝 *

 

  (      𝑝)(𝑝   )     
      

   

|     

              
∑ (

𝑝    
𝑝 *

 

  (      𝑝) (𝑝   )|    |
 
   | | 

𝑝  ∑ (
𝑝    
𝑝 *

 

  (      𝑝)(𝑝   )|    || |
  

   

                     

              
∑ (

𝑝    
𝑝 *

 

  (      𝑝) (𝑝   )|    |
 
   

𝑝  ∑ (
𝑝    
𝑝 *

 

  (      𝑝)(𝑝   )|    | 
 
   

                           

The last expression is bounded above by (𝑝   ), if 

              ∑ (
𝑝    

𝑝
*
 

  (      𝑝) (𝑝   )|    |

 

    

          

 (𝑝   ) [𝑝  ∑(
𝑝    

𝑝
*
 

  (      𝑝)(𝑝   )|    |

 

   

]                     
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But the inequality is equivalent to (4.3.2) and true by hypothesis. Hence, we 

conclude that     
           

 ( )   (𝑝  )  

Remark 4.3.1 

1. By setting 𝑝    and           in Theorem 4.3.1 and Theorem 

4.3.2, respectively, Lemma 4.1.1 and Lemma 4.1.2 due to Silverman 

[60] are obtained. 

2. By setting            in Theorem 4.3.1 and Theorem 4.3.2, 

respectively, Theorem 4.2.1 and Theorem 4.2.2 due to Owa [40] are 

obtained. 

Now, by making use of Lemma 4.1.7, the following starlikeness and 

convexity results in terms of convolution are established.  

Theorem 4.3.3 

Let             𝑝       max(   )  𝑝   ,    ,     𝑝 and 

𝑝   . Also, let the function  ( )  𝐴(𝑝) be in the class   (𝑝  ). If 

 ( ) satisfies 

 ( )  {
     

    
 ( )}                        (    * +)                       

for each   and   on the unit circle, where 

 ( )     ∑(
𝑝    

𝑝
*
 

  (      𝑝) 
   

 

   

                     (     ) 

where   (      𝑝) is given by (2.8.3.6). Then     
           

 ( )    (𝑝  ).        

Proof 

Using (2.8.3.7) and (4.3.3), we have 

                       
           

 ( )     ∑(
𝑝    

𝑝
*
 

  (      𝑝)     
   

 

   

 

 (   )( )                                                       (     ) 
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By setting  ( )   ( ),  ( )   ( ) and  ( )  
   ( )

 ( )
    in Lemma 

4.1.7, we find with the help of (4.3.4) that 

                                                        ,
(    )( )

(   )( )
-    

                                                    ,
(     )( )

(   )( )
-      

                   ,
 (   ) ( )

(   )( )
-           

                                    {
 .    

           
 ( )/

 

    
           

 ( )
}             

               
           

 ( )    (𝑝  ) 

and the proof is complete. 

Theorem 4.3.4 

Let             𝑝       max(   )  𝑝   ,    ,     𝑝 and 

𝑝   . Also, let the function  ( )  𝐴(𝑝) be in the class  (𝑝  ). If  ( ) 

satisfies  

 ( )  {
     

    
   ( )}                (    * +)              (     ) 

for each   and   on the unit circle and  ( ) is given by (4.3.3). Then 

    
           

 ( )   (𝑝  ). 

Proof 

Using (2.8.3.7) and Theorem 4.3.3, we observe that 

          ( )   (𝑝  )  
   ( )

𝑝
   (𝑝  )                                          



72 
 

                                         
           

(
   ( )

𝑝
)    (𝑝  )               

                                 (  
   

𝑝
) ( )    (𝑝  )                         

                              
 (   ) ( )

𝑝
   (𝑝  )                        

                              (   )( )   (𝑝  )                            

                                   
           

 ( )   (𝑝  )                   

and the proof is complete. 

Remark 4.3.2 

1. Letting 𝑝        and      in Theorem 4.3.3 and Theorem 4.3.4, 

respectively, Lemma 4.1.8 and Lemma 4.1.9 due to Owa and Shen [41] 

are obtained. 

2. Letting 𝑝    and     in Theorem 4.3.3 and Theorem 4.3.4, 

respectively, Lemma 4.1.10 and Lemma 4.1.11 due to Raina and Nahar 

[47] are obtained. 

3. Letting     in Theorem 4.3.3 and Theorem 4.3.4, respectively, 

Theorem 4.2.5 and Theorem 4.2.6 due to Amsheri and Zharkova [7] are 

obtained. 

Next, by applying Lemma 4.1.12 and Lemma 4.1.13, other starlikeness 

and convexity conditions for the operator     
           

 ( ) are investigated. 

Theorem 4.3.5  

Let    ,     ,    ,   𝑝   ,      (   )  𝑝   ,    ,   

   , 𝑝    and  ( )  𝐴(𝑝). 

1. If 
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     {(𝑝     )
    
                 

 ( )

    
                 

 ( )
  (𝑝   )

    
                 

 ( )

    
           

 ( )
} 

 
 (   )

 (   )
                                                                         (     ) 

then 

  {
    
                 

 ( )

    
           

 ( )
}  

   

 
                             (     ) 

2. If  

  {(𝑝     )
    
                 

 ( )

    
                 

 ( )
   (𝑝   )

    
                 

 ( )

    
           

 ( )
} 

                                                                                        (     ) 

then 

  {
    
                 

 ( )

    
           

 ( )
}                                                 (     ) 

Proof 

First, we prove (1). Since   

        
    
                 

 ( )

    
           

 ( )
            

          (   )         

Define the function  ( ) by 

    
                 

 ( )

    
           

 ( )
 
    ( )

   ( )
                                  (      ) 

for       and    . It is clear that  ( ) is analytic in   with  ( )   . 

Also, we can find from (4.3.10) that 
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 .    

                 
 ( )/

 

    
                 

 ( )
 
 .    

           
 ( )/

 

    
           

 ( )
     

 
    ( )

    ( )
 

   ( )

   ( )
                                                     (      ) 

by using (2.8.3.9) to (4.3.11), we have 

         (𝑝     )
    
                 

 ( )

    
                 

 ( )
 (𝑝   )

    
                 

 ( )

    
           

 ( )
 

 
    ( )

    ( )
 

   ( )

   ( )
                                                (      ) 

If there exists a point      such that  

    
| | |  |

| ( )|  | (  )|                       

then by Lemma 4.1.12, we have 

   
 (  )    (  )              (   )    

Therefore, since  (  )       we obtain 

     {(𝑝     )
    
                 

 (  )

    
                 

 (  )
 (𝑝   )

    
                 

 (  )

    
           

 (  )
} 

      ,
     (  )

    (  )
 
    (  )

   (  )
  -                              

      ,
     

      
 

    

     
  -  

 (   )

 (   )
               

which is a contradiction to the condition (4.3.6). Therefore, | ( )|    for all 

   . Hence (4.3.10) yields 
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|

|
  

    
                 

 ( )

    
           

 ( )

    
                 

 ( )

    
           

 ( )
  

|

|
 | ( )|          (          ) 

which implies the inequality (4.3.7). This completes the proof of (1) in the 

Theorem 4.3.5. 

For the proof of (2), we define a new function 𝑝( ) by 

    
                 

 ( )

    
           

 ( )
   (   )𝑝( )                                (      ) 

where           and 𝑝( ) is analytic in   with 𝑝( )   . Then we 

find from (4.3.13) that 

  
 .    

                 
 ( )/

 

    
                 

 ( )
 
 .    

           
 ( )/

 

    
           

 ( )
                                

 
(   ) 𝑝 ( )

  (   )𝑝( )
                                                                                (      ) 

by using (2.8.3.9) to (4.3.14), we have 

  (𝑝     )
    
                 

 ( )

    
                 

 ( )
 (𝑝   )

    
                 

 ( )

    
           

 ( )
   

 
(   ) 𝑝 ( )

  (   )𝑝( )
                                                                                (      ) 

If there exists a point      such that 

  *𝑝( )+      (| |  |  |)                                              

       *𝑝(  )+       𝑝(  )                                     (    ) 

Then by using Lemma 4.1.13, we have 

𝑝(  )         
  𝑝 (  )

𝑝(  )
  

 

 
(  

 

 
*             (       )          

Thus from (4.3.15), we have 
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  {(𝑝     )
    
                 

 (  )

    
                 

 (  )
                                                    

  (𝑝   )
    
                 

 (  )

    
           

 (  )
  }         

     ,
(   )  𝑝

 (  )

𝑝(  )

𝑝(  )

  (   )𝑝(  )
-                                              

   
   (   )(    )

 ,     (   ) -
                                                  (     )          

which contradicts the condition (4.3.8). Hence   *𝑝( )+    for all     

and the equality (4.3.13) implies the condition (4.3.9). Therefore, the proof of 

the Theorem 4.3.5 is completed. 

Now, in order to obtain the sufficient condition for convexity of the 

operator     
           

 ( ), we put  
   ( )

 
 instead of  ( ) in the Theorem 4.3.5. 

Theorem 4.3.6 

Let    ,     ,    ,   𝑝   ,      (   )  𝑝   ,    ,   

   , 𝑝    and  ( )  𝐴(𝑝). 

1. If 

  {(𝑝     )
    
                 

(
   ( )
𝑝 *

    
                 

(
   ( )
𝑝 *

  

 (𝑝   )
    
                 

(
   ( )
𝑝 *

    
           

(
   ( )
𝑝 *

}  
 (   )

 (   )
        (      ) 

then 

  {
    
                 

(
   ( )
𝑝 *

    
           

(
   ( )
𝑝 *

}  
   

 
                            (      ) 
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2. If  

  {(𝑝     )
    
                 

(
   ( )
𝑝 *

    
                 

(
   ( )
𝑝 *

                                    

 (𝑝   )
    
                 

(
   ( )
𝑝 *

    
           

(
   ( )
𝑝 *

}                             (      ) 

then 

  {
    
                 

(
   ( )
𝑝 *

    
           

(
   ( )
𝑝 *

}                                        (      ) 

Proof 

First, we prove (1). Since   

             
    
                 

(
   ( )
𝑝 *

    
           

(
   ( )
𝑝 *

            
          (   ) 

Define the function  ( ) by 

    
                 

(
   ( )
𝑝 *

    
           

(
   ( )
𝑝 *

 
    ( )

   ( )
                                (      ) 

for       and    . It is clear that  ( ) is analytic in   with  ( )  

 . Also, we can find from (4.3.20) that 

 (    
                 

(
   ( )
𝑝 *)

 

    
                 

(
   ( )
𝑝 *

 

 (    
           

(
   ( )
𝑝 *)

 

    
           

(
   ( )
𝑝 *
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    ( )

    ( )
 

   ( )

   ( )
                                               (      ) 

by using (2.8.3.9) to (4.3.21), we have 

     (𝑝     )
    
                 

(
   ( )
𝑝 *

    
                 

(
   ( )
𝑝 *

    

  (𝑝   )
    
                 

(
   ( )
𝑝 *

    
           

(
   ( )
𝑝 *

            

 
    ( )

    ( )
 

   ( )

   ( )
                                          (      ) 

If there exists a point      such that 

    
| | |  |

| ( )|  | (  )|                                

 then by Lemma 4.1.12, we have  

   
 (  )    (  )               (   )              

Therefore, since  (  )     , we obtain 

      {(𝑝     )
    
                 

(
   

 (  )
𝑝 *

    
                 

(
   

 (  )
𝑝 *

                                   

 (𝑝   )
    
                 

(
   

 (  )
𝑝 *

    
           

(
   

 (  )
𝑝 *

}                                        

    ,
     (  )

    (  )
 
    (  )

   (  )
  -                                                               

       ,
     

      
 

    

     
  -  

 (   )

 (   )
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which is a contradiction to the condition (4.3.16). Therefore, | ( )|    for 

all    . Hence (4.3.20) yields 

    

|

|  
    
                 

(
   ( )
𝑝 *

    
           

(
   ( )
𝑝 *

    
                 

(
   ( )
𝑝 *

    
           

(
   ( )
𝑝 *

  |

|

 | ( )|        (          ) 

which implies the inequality (4.3.17). This completes the proof of (1) in the 

Theorem. 

For the proof of (2), we define a new function 𝑝( ) by 

    
                 

(
   ( )
𝑝 *

    
           

(
   ( )
𝑝 *

   (   )𝑝( )                           (      ) 

where 𝑝( ) is analytic in   with  𝑝( )          and     . Then we 

find from (4.3.23) that 

 (    
                 

(
   ( )
𝑝 *)

 

    
                 

(
   ( )
𝑝 *

 

 (    
           

(
   ( )
𝑝 *)

 

    
           

(
   ( )
𝑝 *

      

 
(   ) 𝑝 ( )

  (   )𝑝( )
                                                                           (      ) 

by using (2.8.3.9) to (4.3.24), we have 

 (𝑝     )
    
                 

(
   ( )
𝑝 *

    
                 

(
   ( )
𝑝 *

   

(𝑝   )
    
                 

(
   ( )
𝑝 *

    
           

(
   ( )
𝑝 *
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(   ) 𝑝 ( )

  (   )𝑝( )
                                                                           (      ) 

If there exists a point      such that 

  *𝑝( )+       (| |  |  |)                                  

      *𝑝(  )+       𝑝(  )                          (     )                        

Then by using Lemma 4.1.13, we have 

𝑝(  )            
  𝑝 (  )

𝑝(  )
  

 

 
(  

 

 
*               (       ) 

Thus from (4.3.25), we have 

   {(𝑝     )
    
                 

(
   

 (  )
𝑝 *

    
                 

(
    (  )

𝑝 *
    

   (𝑝   )
    
                 

(
   

 (  )
𝑝 *

    
           

(
   

 (  )
𝑝 *

  }           

   ,
(   )  𝑝

 (  )

𝑝(  )

𝑝(  )

  (   )𝑝(  )
-                                                             

 
   (   )(    )

 ,     (   ) -
                                                                                           

which contradicts the condition (4.3.18). Hence   *𝑝( )+    for all     

and the equality (4.3.23) implies the condition (4.3.19). Therefore, the proof 

of the Theorem 4.3.6 is completed. 

Remark 4.3.3 

By setting         in Theorem 4.3.5, the sufficient conditions for 

starlikeness of 𝑝-valent functions in   is obtained as follows. 

Corollary 4.3.7 

Let           and  ( )  𝐴(𝑝). 

1. If 



81 
 

  ,
    ( )

  ( )
 
   ( )

 ( )
-  

 (   )

 (   )
                                 (      ) 

then 

  ,
   ( )

𝑝 ( )
-  

   

 
                                                            (      ) 

2. If  

   ,
    ( )

  ( )
 
   ( )

 ( )
-                                                  (      ) 

 then 

  ,
   ( )

𝑝 ( )
-                                                                       (      ) 

Remark 4.3.4 

By setting          in Theorem 4.3.6, the sufficient conditions for 

convexity of 𝑝-valent functions in   is obtained as follows. 

Corollary 4.3.8 

Let            and  ( )  𝐴(𝑝).  

1. If  

     ,
      ( )       ( )

    ( )    ( )
 
    ( )

  ( )
-  

   

 (   )
         (      ) 

then 

  ,
 

𝑝
(  

    ( )

  ( )
)-  

   

 
                                          (      ) 

2. If  

  ,
      ( )       ( )

    ( )    ( )
 
    ( )

  ( )
-                           (      ) 

then 

  ,
 

𝑝
(  

    ( )

  ( )
)-                                                     (      ) 
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Chapter 5 

  

Certain classes of analytic functions with 

negative coefficients 

   

This chapter is devoted to study certain classes of analytic and 𝑝-valent 

functions whose non-zero coefficients, from the second on, are negative with 

an aim to obtain some properties.  

 

5.1    Introduction and preliminaries  

For univalent functions, the well-known classes   ( ) and  ( ) of 

starlike and convex functions of order         with negative 

coefficients, which obtained by taking intersection, respectively, of the classes 

  ( ) and  ( ) with  , that are, 

  ( )    ( )   ,  ( )   ( )    

These classes were introduced and studied by Silverman [60]. Results 

concerning coefficient inequalities, distortion, covering theorems, order of 

starlikeness, radius of convexity theorems and extreme points are obtained by 

author. Further, Owa [40] introduced the classes   (𝑝  ) and  (𝑝  ) of 𝑝-

valent starlike and convex functions of order       𝑝 with negative 

coefficients which are extensions of the familiar classes   ( ) and  ( ), 

respectively, when 𝑝   , that are 

  (   )    ( ),  (   )   ( ) 

Many authors have defined various classes of univalent and 𝑝-valent 

functions with negative coefficients and studied their geometric and analytic 

properties, such as [10], [12], [40], [42], [56], [59], [60], [61], [63] and others.   
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In this chapter, motivated essentially by a-fore-mentioned works, in 

order to solve many problems such as, coefficient bounds, distortion 

properties, Hadamard product (convolution) properties, closure properties, 

extreme points, radius of close-to-convexity, radius of starlikeness, radius of 

convexity, class-preserving integral operators and integral means inequalities, 

the classes   (𝑝  ) and   
         (   ) of analytic and 𝑝-valent functions 

with negative coefficients are defined and studied. 

Now, in order to prove the results concerning integral means inequality, 

the following lemma due to Littlewood [28] is needed.  

Lemma 5.1 

If the functions  ( ) and  ( ) are analytic in   with  ( )   ( ), then for 

    and      , we have     

∫ | (    )|
 

  

 

   ∫ | (    )|
 

  

 

               (      )         (     ) 

 

5.2    On a class of  -valent functions  

In this section, various properties for functions belonging to the class 

  (𝑝  ) according to Owa [40] and Sӑlӑgean et. al. [56] are studied. The 

class   (𝑝  ) is defined as follows.  

Definition 5.2.1 [40]  

A function  ( )   (𝑝) is said to be 𝑝-valent starlike function of order   if 

and only if   

  ,
   ( )

 ( )
-                               (   )                   (     ) 

for     𝑝 and 𝑝   . The class of all 𝑝-valent starlike functions of 

order   with negative coefficients is denoted by   (𝑝  ). 

Notice that, for 𝑝   , the class   (𝑝  ) reduces to the class   ( ) 

which was introduced by Silverman [60].  
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5.2.1 Coefficient bounds 

The sufficient and necessary conditions for functions to be in the class 

  (𝑝  ) according to Owa [40] can be obtained as follows.  

Theorem 5.2.1.1  

Let the function  ( ) be defined by (2.2.2). Then  ( ) belongs to the class 

  (𝑝  ) if and only if     

 ∑(𝑝     )      𝑝   

 

   

                                              (       ) 

The result is sharp. 

Proof 

Assume that the inequality (5.2.1.1) holds. Then we obtain 

|
    ( )

 ( )
 𝑝|  |

 ∑        
    

   

    ∑       
    

   

|                          

                                                
∑      | |

  
   

  ∑      | |
  

   

 

 
∑      
 
   

  ∑      
 
   

                

 𝑝                                     

This shows that the values of     ( )  ( )⁄  lie in a circle centered at   𝑝 

whose radius is (𝑝   ). Hence  ( )    (𝑝  ). Conversely, suppose that 

  ,
   ( )

 ( )
-    ,

𝑝   ∑ (𝑝   )      
    

   

   ∑       
    

   

-                    

for     𝑝, 𝑝    and      Choosing values of    on the real axis so 

that    ( )  ( )⁄  is real, and letting      through real axis, we can see that 

𝑝  ∑(𝑝   )    

 

   

  (  ∑    

 

   

+                                           

Thus we have the required inequality (5.2.1.1). Finally, the function  ( ) 

given by  
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   ( )     
𝑝   

𝑝     
                (𝑝    )                       (       ) 

is an extremal function for the Theorem 5.2.1.1. 

Corollary 5.2.1.2 

Let the function  ( ) defined by (2.2.2) be in the class   (𝑝  ). Then    

      
𝑝   

𝑝     
                (𝑝    )                       (       ) 

Equality is attained for the function  ( ) given by (5.2.1.2). 

Remark 5.2.1.1  

Setting 𝑝    in Theorem 5.2.1.1, the corresponding result proved by 

Silverman [60] is obtained as follows. 

Corollary 5.2.1.3 

Let the function  ( ) be defined by (2.1.3). Then  ( ) belongs to the class 

  ( ) if and only if     

 ∑(   )       

 

   

                                                 (       ) 

The result is sharp. 

Remark 5.2.1.2 

Setting 𝑝    in Corollary 5.2.1.2, the corresponding result proved by 

Silverman [60] is obtained as follows. 

Corollary 5.2.1.4 

Let the function  ( ) defined by (2.1.3) be in the class   ( ). Then    

    
   

   
                                (   )                       (       ) 

The result is sharp for the function defined by  

 ( )    
   

   
                    (   )                       (       ) 

  

5.2.2  Distortion properties 

In this subsection, the modulus of  ( ) and its derivative for the class 
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  (𝑝  ) according to Owa [40] are obtained.  

Theorem 5.2.2.1  

Let the function  ( ) defined by (2.2.2) be in the class   (𝑝  )  Then 

| |  
𝑝   

𝑝     
| |    | ( )|  | |  

𝑝   

𝑝     
| |          

 (       ) 

and 

𝑝| |    
(𝑝   )(𝑝   )

𝑝     
| |  |  ( )|  𝑝| |    

(𝑝   )(𝑝   )

𝑝     
 | |   

(       ) 

for    , the results are sharp.    

Proof 

By virtue of Theorem 5.2.1.1, we can observe that 

                       (𝑝     )∑    

 

   

 ∑(𝑝     )    

 

   

 

 𝑝                                                                   

which implies that 

            ∑     

 

   

 
𝑝   

𝑝     
                                      (       ) 

Hence the first estimate (5.2.2.1) follows from (5.2.2.3). Furthermore, from 

Theorem 5.2.1.1, we note that 

                          
𝑝     

𝑝   
∑(𝑝   )    

 

   

 𝑝     

which gives that 

∑(𝑝   )    

 

   

 
(𝑝   )(𝑝   )

𝑝     
                               (       ) 
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Consequently, we can show the second estimate (5.2.2.2) with the aid of 

(5.2.2.4). Further the estimates of the theorem are sharp for the function  ( ) 

defined by  

 ( )     
𝑝    

𝑝     
                                       (       ) 

Corollary 5.2.2.2 

Let the function  ( ) defined by (2.2.2) be in the class    (𝑝  )  Then the 

unit disk   is mapped onto a domain that contains the disk | |    , where 

   
 

𝑝     
                                                      (       ) 

The result is sharp with the extremal function  ( ) given by (5.2.2.5). 

 

5.2.3 Convolution properties   

The following Hadamard product (or convolution) properties for the 

class   (𝑝  ) established by Sӑlӑgean et. al. [56] are studied. 

Theorem 5.2.3.1 

Let the functions   ( ) (     ) defined by  

  ( )     ∑        
    

 

   

         (          𝑝   )           (       ) 

be in the class   (𝑝  ). Then (     )( )   
 (𝑝  (𝑝  )), where 

 (𝑝  )  𝑝  
(𝑝   ) 

(𝑝     )  (𝑝   ) 
                         (       ) 

The result is sharp. 

Proof 

We need to find the largest    (𝑝  ) such that 

∑
𝑝    

𝑝   
              

 

   

                                                     

since  
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∑
𝑝    

𝑝   
       

 

   

                                 

and 

∑
𝑝    

𝑝   
        

 

   

                                

we have 

∑
𝑝    

𝑝   
 √                  

 

   

                                             

Thus it is sufficient to show that 

 
𝑝     

𝑝   
                

𝑝     

𝑝   
 √                                      

that is 

                √               
(𝑝   )(𝑝     )

(𝑝   )(𝑝     )
                           

Notice that 

√               
𝑝   

𝑝     
                                                           

Consequently, we need only to prove that 

𝑝   

𝑝     
 
(𝑝   )(𝑝     )

(𝑝   )(𝑝     )
                                                  

or, equivalently, that 

  𝑝  
 (𝑝   ) 

(𝑝     )  (𝑝   ) 
                                                  

since  

 ( )  𝑝  
 (𝑝   ) 

(𝑝     )  (𝑝   ) 
                           (       ) 

is an increasing function of   (    ), letting     in (5.2.3.3), we obtain 

   ( )  𝑝  
(𝑝   ) 

(𝑝     )  (𝑝   ) 
                                        

Finally, The result is sharp for the functions  
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  ( )     
𝑝   

𝑝     
                (     )             (       ) 

Theorem 5.2.3.2 

Let the function   ( ) defined by (5.2.3.1) be in the class   (𝑝  ) and let the 

function   ( ) defined by (5.2.3.1) be in the class   (𝑝  ). Then   ( )  

  ( )   
 (𝑝  (𝑝    )), where 

   (𝑝    )  𝑝  
(𝑝   )(𝑝   )

(𝑝     )(𝑝     )  (𝑝   )(𝑝   )
                  

(       ) 

The result is sharp. 

Proof 

Proceeding as in the proof of Theorem 5.2.3.1, we get 

  Φ( )  𝑝  
 (𝑝   )(𝑝   )

(𝑝     )(𝑝     )  (𝑝   )(𝑝   )
            (       ) 

Since the function Φ( ) is an increasing function of   (    ), letting     

in (       ), we obtain 

   Φ( )  𝑝  
(𝑝   )(𝑝   )

(𝑝     )(𝑝     )  (𝑝   )(𝑝   )
       

The result is sharp for the functions 

  ( )     
𝑝   

𝑝     
                                                   (       )  

and 

      ( )     
𝑝   

𝑝     
                                                   (       ) 

 

5.2.4 Closure properties 

The following closure theorem proven by Owa [40] is given.  

Theorem 5.2.4.1 

Let the functions   ( ) (           ) defined by (5.2.3.1) be in the class 

  (𝑝  ). Then the function  
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 ( )  ∑      ( )

 

   

                        (    )                       (       ) 

is also in the class   (𝑝  ), where 

∑    

 

   

                                                                           (       ) 

Proof 

According to the definition of  ( )  we can write that 

 ( )     ∑  (∑          

 

   

+                               

 

   

                  

By means of Theorem 5.2.1.1, we have 

∑ (𝑝     )       

 

   

 𝑝                                                           

for every              . Hence we can observe that 

      ∑  (𝑝     ) (∑          

 

   

+ 

 

   

 ∑   (∑(𝑝     )      

 

   

+  

 

   

   

                                           (∑    

 

   

+ (𝑝   )    

 𝑝                                                          

which implies that  ( )    (𝑝  ).  

Further, the following result proven by Sӑlӑgean et. al. [56] is given as 

well.  

Theorem 5.2.4.2 

Let the functions   ( ) (     ) defined by (5.2.3.1) be in the class   (𝑝  )  

Then the function   

      ( )     ∑(       
          

 

 

   

)                           (       ) 

belongs to the class   (𝑝  (𝑝  )), where  
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 (𝑝  )  𝑝  
 (𝑝   ) 

(𝑝     )   (𝑝   ) 
                          (       ) 

The result is sharp. 

Proof  

By virtue of Theorem 5.2.1.1, we obtain 

∑{
𝑝     

𝑝   
}
 

       
 

 

   

 {∑
𝑝     

𝑝   
        

 

   

}

 

          (       ) 

and 

∑{
𝑝     

𝑝   
}
 

       
 

 

   

 {∑
𝑝     

𝑝   
        

 

   

}

 

          (       ) 

It follows from (5.2.4.5) and (5.2.4.6) that  

 ∑
 

 
{
𝑝     

𝑝   
}
  

   

(      
        

 )                                       

Therefore, we need to find the largest   such that 

  
𝑝     

𝑝   
   

 

 
{
𝑝     

𝑝   
}
 

                                                      

that is, 

    𝑝  
  (𝑝   ) 

(𝑝     )   (𝑝   ) 
                                            

since  

 ( )  𝑝  
  (𝑝   ) 

(𝑝     )   (𝑝   ) 
                         (       ) 

is an increasing function of   (    ), letting     in (5.2.4.7) we have 

  𝑝  
 (𝑝   ) 

(𝑝     )   (𝑝   ) 
                                            

The result is sharp for the functions   ( ) (     ) given by (5.2.3.4). 
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5.2.5 Extreme points 

Owa [40] proved the following property which is concerned with the 

extreme points of the class   (𝑝  )  

Theorem 5.2.5.1 

Let  

  ( )                                                                        (       ) 

and 

  ( )     
𝑝   

𝑝     
                                      (       ) 

for     𝑝 and 𝑝    , then  ( )     (𝑝  ) if and only if it can be 

expressed in the form 

 ( )  ∑  

 

   

   ( )                                                   (       ) 

where     * + and 

                      ∑   

 

   

                                               (       ) 

Proof 

Assume that 

 ( )  ∑  

 

   

   ( )                                  

                         ∑
𝑝  

 𝑝     
     

   

 

   

               

then, we get that 

∑(𝑝     ) (
𝑝   

 𝑝     
*   

 

   

 𝑝                                  

This show that  ( )    (𝑝  )  Conversely, assume that  ( )    (𝑝  )   by 

using Theorem 5.2.1.1, we can show that  
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𝑝   

 𝑝     
                                                                  

for    , setting  

   
𝑝     

𝑝   
                                                              

and  

             ∑  

 

   

                                                                    

we have the representation (5.2.5.3). This completes the proof of the Theorem 

5.2.5.1. 

 

5.2.6 Radius of convexity   

In this subsection, the radius of convexity of functions in the class 

  (𝑝  ) determined by Owa [40], is given as follows.                                        

Theorem 5.2.6.1 

Let the function  ( ) defined by (2.2.2) be in the class    (𝑝  )  Then  ( ) is 

𝑝-valently convex of order   (    𝑝) in the disk | |    , where 

            ,
𝑝(𝑝   )(𝑝     )

(𝑝   )(𝑝   )(𝑝     )
-

 
 ⁄

                       (       ) 

with equality for a function  ( ) of the form (5.2.1.2). 

Proof 

It suffices to show that 

    |  
     ( )

  ( )
 𝑝|  𝑝                      (| |    )                                    

But 

 |  
     ( )

  ( )
 𝑝|  |

 ∑  (𝑝   )       
  

   

𝑝  ∑ (𝑝   )        
  

   

|             

                         
∑  (𝑝   )     | |

  
   

𝑝  ∑ (𝑝   )     | |
  

   

 

      𝑝                           
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  is true if  

   ∑
(𝑝   )(𝑝     )

𝑝(𝑝   )
     | |

   

 

   

                                                    

By Theorem 5.2.1.1, we need only to find values of | | for which  

 
(𝑝   )(𝑝     )

𝑝(𝑝   )
 | |  

𝑝     

𝑝   
                            (       ) 

Solving (5.2.6.2) for | |, we get the desired result (5.2.6.1). 

 

5.2.7 Class-preserving integral operators 

The following results are dedicated for the class-preserving properties 

of the integral operator     ( ( )) for  ( )   (𝑝) due to Sӑlӑgean et. al. 

[56]. 

Theorem 5.2.7.1 

Let the function  ( ) defined by (2.2.2) be in the class   (𝑝  )  Also let 

   𝑝. Then the function  ( ) defined by  

 ( )      ( ( ))  
  𝑝

  
∫     ( )

 

 

                          (       ) 

is also in to the class   (𝑝  )  

Proof  

From the representation of  ( ) it follows that 

 ( )     ∑     
    

 

   

                           

where 

      (
  𝑝

  𝑝   
*                                                                    

Therefore 
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∑(𝑝     )

 

   

(
  𝑝

  𝑝   
*      ∑(𝑝     )

 

   

      

 𝑝                                                 

since  ( )    (𝑝  ). Hence, by Theorem 5.2.1.1,  ( )    (𝑝  )   

Remark 5.2.7.1 

Letting     𝑝 in Theorem 5.2.7.1, the following result is obtained. 

Corollary 5.2.7.2 

Let the function  ( ) defined by (2.2.2) be in the class   (𝑝  ). Then  

 ( )      ∫
 ( )

  

 

 

                                                      (       ) 

is also in the class   (𝑝  ). 

Theorem 5.2.7.3 

Let    𝑝 and the function   ( ) be in the class   (𝑝  ). Then the function 

 ( ) given by (5.2.7.1) is 𝑝-valent in the disk | |     where  

         ,
𝑝(𝑝     )(  𝑝)

(𝑝   )(  𝑝   )(𝑝   )
-

 
 ⁄

                (       ) 

The result is sharp. 

Proof 

Let 

 ( )     ∑      
    

 

   

             (        𝑝   )            (       ) 

It follows from (5.2.7.1), that 

  ( )   
    

  𝑝
(   ( ))

 
                                                                        

     ∑(
  𝑝   

  𝑝
*      

   

 

   

                                

in order to prove the result, it suffices to show that 
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|
  ( )

    
 𝑝|  𝑝                           (| |    )                           (       ) 

Now 

                     |
  ( )

    
 𝑝|  | ∑(𝑝   ) (

  𝑝   

  𝑝
*      

 

 

   

|                       

   ∑(𝑝   ) (
  𝑝   

  𝑝
*    | |

  

 

   

                              

Thus (5.2.7.5) is true if  

∑
(𝑝   )(  𝑝   )

𝑝(  𝑝)
    | |

 

 

   

                                   (       ) 

By Theorem 5.2.1.1, confirm that 

∑
𝑝    

𝑝   

 

   

                                                                                  

Thus (5.2.7.6) will be satisfied if  

 
(𝑝   )(  𝑝   )

𝑝(  𝑝)
| |  

𝑝     

𝑝   
          (   )      

or, if 

| |  ,
𝑝(  𝑝)(𝑝     )

(𝑝   )(  𝑝   )(𝑝   )
-

 
 ⁄

           (   )          (       ) 

which leads us precisely to the main assertion of Theorem 5.2.7.3. 

 

5.3 On a generalized class of  -valent functions 

In the current section, a new class   
         (   ) of analytic and 𝑝-

valent starlike functions involving the generalized differential operator 

    
           

 ( ) given by (2.8.3.8) for  ( )   (𝑝) is introduced and their 

properties are investigated according to Amsheri and Abouthfeerah [6].  
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Definition 5.3.1 

A function  ( )   (𝑝) is said to be in the class   
         (   ) if it 

satisfies  

 
𝑝
 .    

           
 ( )/

 

(   )        
           

 ( )
 
  (    ) 

   
                         (     ) 

for 𝑝   ,     ,     ,    𝑝   ,      (   )  𝑝   ,    ,   

    and        The condition (5.3.1) is equivalent to 

|

|

 
𝑝
 .    

           
 ( )/

 

(   )        
           

 ( )
  

 
𝑝
 .    

           
 ( )/

 

(   )        
           

 ( )
     

|

|

           (   )     (     ) 

where     
           

 ( ) is given by (2.8.3.8). 

Notice that, for         and    , the a-fore-mentioned class 

reduces to the class   (𝑝  ) which was introduced earlier by Owa [40] and 

studied by Sӑlӑgean et. al. [56]. Further, for         and 𝑝     , it 

reduces to the class   ( ) which was studied by Silverman [60]. 

 

5.3.1 Coefficient bounds  

In this subsection, the sufficient and necessary conditions for the 

functions  ( )   (𝑝) to be in the class   
         (   ) are proven.     

Theorem 5.3.1.1 

Let the function  ( ) be defined by (2.2.2). Then  ( ) belongs to the class 

  
         (   ) if and only if   

∑(
𝑝    

𝑝
*
 

,  𝑝(    )-   (      𝑝)    

 

   

 𝑝(   )      (       ) 
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where   (      𝑝) is given by (2.8.3.6). 

Proof 

Since  ( )    
         (   ), then 

|

 
𝑝
 .    

           
 ( )/

 
 .(   )        

           
 ( )/

 
𝑝
 .    

           
 ( )/

 
 (    ) .(   )        

           
 ( )/

|     

          (       ) 

It follows from (5.3.1.2) that 

  

{
 
 

 
 

∑ (
𝑝    
𝑝 *

 

  (      𝑝) 0.
𝑝   
𝑝 /   1     

  
   

 (   )

 ∑ (
𝑝    
𝑝 *

 

  (      𝑝) 0.
𝑝   
𝑝 /   (    )1      

  
   }

 
 

 
 

   

Choosing values of    on the real axis so that 

 

 
 .    

           
 ( )/

 

(   )        
           

 ( )
 is real, 

and letting      through real axis, we have 

∑(
𝑝    

𝑝
*
 

  (      𝑝) [(
𝑝   

𝑝
*   ]     

 

   

 

  (   )  ∑(
𝑝    

𝑝
*
 

  (      𝑝) [(
𝑝   

𝑝
*   (    )]       

 

   

 

which gives the desired assertion (5.3.1.1). Conversely, let the inequality 

(5.3.1.1) holds true and let | |   .Then we have 

     |
 

𝑝
 .    

           
 ( )/

 
 .(   )        

           
 ( )/| 

 |
 

𝑝
 .    

           
 ( )/

 
 (    ) .(   )        

           
 ( )/|  
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 | ∑(
𝑝    

𝑝
*
 

  (      𝑝) [(
𝑝   

𝑝
*   ]      

   

 

   

|  

 |

 (   )  

 ∑(
𝑝    

𝑝
*
 

  (      𝑝) [(
𝑝   

𝑝
*   (    )]      

   

 

   

| 

  ∑(
𝑝    

𝑝
*
 

[(
𝑝   

𝑝
*    ]   (      𝑝)    

 

   

  (   )     

Hence  ( )    
         (   )  This completes the proof.  

Corollary 5.3.1.2 

Let the function  ( ) defined by (2.2.2) be in the class    
         (   ). 

Then    

       
𝑝(   )

(
𝑝    
𝑝 *

 

,  𝑝(    )-   (      𝑝)

                 (       ) 

where 𝑝     and   (      𝑝) is given by (2.8.3.6). The result (5.3.1.3) is 

sharp for a function of the form 

 ( )     
𝑝(   )

(
𝑝    
𝑝 *

 

,  𝑝(    )-   (      𝑝)

           (       ) 

Remark 5.3.1.1 

Letting 𝑝            and     in Theorem 5.3.1.1 and Corollary 

5.3.1.2 respectively, Corollary 5.2.1.3 and Corollary 5.2.1.4 due to Silverman 

[60] are obtained. 

 

5.3.2 Distortion properties 

The modulus of  ( ) and its derivative for the class   
         (   ) 

are obtained as follows. 
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Theorem 5.3.2.1 

Let the function  ( ) defined by (2.2.2) be in the class   
         (   ) such 

that      ,    ,   𝑝   ,    .  
   

 
/,    ,      , 

      and 𝑝   , then  

| ( )|  | |  
𝑝(   )(𝑝       )(𝑝     )

(
𝑝   
𝑝 *

 

,  𝑝(    )-(𝑝   )(𝑝       )

 | |     

  (       ) 

| ( )|   | |  
𝑝(   )(𝑝       )(𝑝     )

(
𝑝   
𝑝 *

 

,  𝑝(    )-(𝑝   )(𝑝       )

| |       

  (       ) 

|  ( )|   𝑝| |    
𝑝(   )(𝑝       )(𝑝     )

(
𝑝   
𝑝 *

 

,  𝑝(    )-(𝑝       )

| |   

(       ) 

and 

|  ( )|   𝑝| |    
𝑝(   )(𝑝       )(𝑝     )

(
𝑝   
𝑝 *

 

,  𝑝(    )-(𝑝       )

| |      

 (       ) 

for    . The estimates for | ( )| and |  ( )| are sharp. 

Proof  

We observe that the function   (      𝑝) defined by (2.8.3.6) satisfies the 

inequality   (      𝑝)       (      𝑝)     , provided that   

 .  
   

 
/. Thereby, showing that   (      𝑝) is non-decreasing. Thus 

under the hypothesis of the theorem, we have 

   
(𝑝   )(𝑝       )

(𝑝     )(𝑝       )
   (      𝑝)    (      𝑝)            

for  ( )    
         (   ), in view of Theorem 5.3.1.1, we have 
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(
𝑝   
𝑝 *

 

,  𝑝(    )-(𝑝   )(𝑝       )

(𝑝     )(𝑝       )
∑      

 

   

       

 ∑(
𝑝    

𝑝
*
 

,  𝑝(    )-   (      𝑝)    

 

   

             

 𝑝(   )                                                                                           

which gives 

     ∑      

 

   

  
𝑝(   )(𝑝       )(𝑝     )

(
𝑝   
𝑝 *

 

,  𝑝(    )-(𝑝   )(𝑝       )

    

Consequently, we obtain 

    | ( )|  | |  | |   ∑    

 

   

    

    | |  
𝑝(   )(𝑝       )(𝑝     )

(
𝑝   
𝑝 *

 

,  𝑝(    )-(𝑝   )(𝑝       )

 | |    

and 

| ( )|   | |  | |   ∑    

 

   

                                                                                

 | |  
𝑝(   )(𝑝       )(𝑝     )

(
𝑝   
𝑝 *

 

,  𝑝(    )-(𝑝   )(𝑝       )

 | |     

which prove the assertions (5.3.2.1) and (5.3.2.2) of Theorem 5.3.2.1. 

Furthermore, from Theorem 5.3.1.1, we note that 

∑(𝑝   )    

 

   

  
𝑝(   )(𝑝       )(𝑝     )

(
𝑝   
𝑝 *

 

,  𝑝(    )-(𝑝       )       

          

(       ) 

Thus, we have 
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        |  ( )|   𝑝| |    | | ∑(𝑝   )    

 

   

                      (       ) 

and  

   |  ( )|   𝑝| |    | | ∑(𝑝   )    

 

   

                      (       ) 

On using (5.3.2.5), (5.3.2.6) and (5.3.2.7), we arrive at the desired results 

(5.3.2.3) and (5.3.2.4). 

Finally, we can prove that the estimates for | ( )| and |  ( )| are sharp 

by taking the function 

   ( )     
𝑝(   )(𝑝       )(𝑝     )

(
𝑝   
𝑝 *

 

,  𝑝(    )-(𝑝   )(𝑝       )

              

 (       ) 

Corollary 5.3.2.2 

Let the function  ( ) defined by (2.2.2) be in the class   
         (   ). 

Then  ( ) is included in a disk with center at the origin and radius    given 

by 

     
𝑝(   )(𝑝       )(𝑝     )

(
𝑝   
𝑝 *

 

,  𝑝(    )-(𝑝   )(𝑝       )

          (       ) 

and   ( ) is included in a disk with center at the origin and radius    given by 

     𝑝  
𝑝(   )(𝑝       )(𝑝     )

(
𝑝   
𝑝 *

 

,  𝑝(    )-(𝑝       )

                    (        ) 

  

5.3.3 Convolution properties  

In this subsection, the Hadamard product properties of any two 

functions in the class   
         (   ) are obtained. 
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Theorem 5.3.3.1  

Let the functions   ( ) (     ) defined by (5.2.3.1) be in the 

class   
         (   ) such that      ,    ,   𝑝   ,    .  

   

 
/,    ,      ,     1 and 𝑝   . Then (     )( )  

  
         (   ), where 

        ,
 ( )  𝑝(𝑝   )(   ) 

 ( )  𝑝  (   ) 
-                                (       ) 

and 

 ( )  (
𝑝    

𝑝
*
 

,  𝑝(    )-   (      𝑝)                   (       ) 

Proof 

It suffices to prove that 

          ∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
              

 

   

              

since  

∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
       

 

   

                            

and 

∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
        

 

   

                           

we have 

       ∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
 √               

 

   

     

(       ) 

Thus, we need to find the largest   such that   
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           ∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
               

 

   

   

        ∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
 √              

 

   

    

or, equivalently that 

          √                  
,  𝑝(    )-(   )

,  𝑝(    )-(   )
                                  

In view of (5.3.3.3), it is sufficient to find the largest   such that  

 
𝑝(   )

(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

 
,  𝑝(    )-(   )

,  𝑝(    )-(   )
 

(       ) 

The inequality (5.3.3.4) yields  

                ,
 ( )  𝑝(𝑝   )(   ) 

 ( )  𝑝  (   ) 
-                                         

where 

                         ( )  (
𝑝    

𝑝
*
 

,  𝑝(    )-   (      𝑝)                    

which completes the proof of Theorem 5.3.3.1. 

Corollary 5.3.3.2 

Let the functions   ( ) (     ) defined by (5.2.3.1) be in the class 

  
         (   ). Then the function 

 ( )     ∑√             

 

   

                 (𝑝   )           (       ) 

belongs to the class    
         (   ).  

Proof  

since  
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   ∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
       

 

   

                           

and 

∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
        

 

   

                          

we have 

        ∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
 √               

 

   

    

By Theorem 5.3.1.1, we get  ( )    
         (   ). 

Theorem 5.3.3.3 

Let the function  ( ) defined by (2.2.2) be in the class   
         (   ). 

Also, let 

 ( )     ∑       
    

 

   

 (|     |    𝑝   )           (       ) 

Then (   )( )    
         (   )  

Proof 

Since 

∑(
𝑝    

𝑝
*
 

,  𝑝(    )-   (      𝑝)|         |

 

   

               

 ∑(
𝑝    

𝑝
*
 

,  𝑝(    )-   (      𝑝)    |     |

 

   

                      

 ∑(
𝑝    

𝑝
*
 

,  𝑝(    )-   (      𝑝)    

 

   

                                    

 𝑝(   )                                                                                                              

By Theorem 5.3.1.1, it follows that (   )( )    
         (   )    
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5.3.4  Closure properties 

The following linear combinations of functions in the class 

  
         (   ) are proven. 

Theorem 5.3.4.1 

Let the functions   ( ) (          ) defined by (5.2.3.1) be in the 

class   
         (   ). Then the function   

    ( )     
 

 
∑(∑      

 

   

+

 

   

                                         (       ) 

is also in the class    
         (   ).  

Proof  

Since   ( )    
         (   ), (          ). By Theorem 5.3.1.1, we 

have  

∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
        

 

   

                                       

so 

∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )       
( 
 

 
∑      

 

   

+ 

 

   

                        

 

 
∑ ∑

(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
       

 

   

 

   

        

which shows that  ( )    
         (   ). 

Theorem 5.3.4.2 

Let the functions   ( ) (     ) defined by (5.2.3.1) be in the class 

  
         (   ) such that          ,   𝑝   ,    .  

   

 
/, 

   ,       ,       and 𝑝   . Then the function   
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      ( )     ∑(       
          

 

 

   

)                                   (       ) 

belongs to the class    
         (   ), where  

        ,
 ( )   𝑝(𝑝   )(   ) 

 ( )   𝑝  (   ) 
-                         (       ) 

and  ( ) is given by (5.3.3.2).  

Proof  

By virtue of Theorem 5.3.1.1, we obtain 

      ∑{
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
}

 

       
 

 

   

                  

 {∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
        

 

   

}

 

           (       ) 

and 

      ∑{
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
}

 

         
 

 

   

                        

 {∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
        

 

   

}

 

           (       ) 

It follows from (5.3.4.4) and (5.3.4.5) that  

    ∑
 

 
{
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
}

 
 

   

(      
        

 )    

Therefore, we need to find the largest   such that 
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      ∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
(      

        
 )

 

   

      

Thus, it is sufficient to show that 

  
 (
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
                                                     

  
 

 
{
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
}

 

                        (       ) 

The inequality (5.3.4.6) yields 

             ,
 ( )   𝑝(𝑝   )(   ) 

 ( )   𝑝  (   ) 
-                                                  

where  ( ) is given by (5.3.3.2). This completes the proof of the Theorem 

5.3.4.2. 

Theorem 5.3.4.3 

The class   
         (   ) is convex. 

Proof 

Suppose that the functions   ( ) (     ) defined by (5.2.3.1) be in the 

class    
         (   )  Then it is sufficient to show that the function 

 ( )     ( )  (   )  ( )                         (     )         

or, equivalently 

 ( )     ∑{        (   )      }  
   

 

   

       (     )         

is also in the class    
         (   )  

Now, from our hypothesis and Theorem 5.3.1.1, it follows readily that 
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∑(
𝑝    

𝑝
*
 

,  𝑝(    )-  (      𝑝)  (        (   )      )

 

   

 

 𝑝(   ) 

which evidently proves Theorem 5.3.4.3. 

 

5.3.5 Extreme points 

The extreme points for the class    
         (   ) can be determined as 

follows. 

Theorem 5.3.5.1 

Let  

  ( )                                                                                    (       ) 

and 

    ( )     
𝑝(   )

(
𝑝    
𝑝 *

 

,  𝑝(    )-   (      𝑝)

          (       ) 

for 𝑝    . Then  ( )     
         (   ) if and only if it can be expressed 

in the form 

 ( )  ∑    

 

   

     ( )                                                     (       ) 

where 

                        ∑     

 

   

                                                (       ) 

Proof 

Let  

 ( )  ∑    

 

   

     ( )                                                                               
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    ∑
𝑝(   )

(
𝑝    
𝑝 *

 

,  𝑝(    )-   (      𝑝)

       
   

 

   

     

Then, in view of (5.3.5.4), it follows that 

                      ∑{
(
𝑝    
𝑝 *

 

,  𝑝(    )-   (      𝑝)

𝑝(   )

 

   

                       

                                (
𝑝(   )

(
𝑝    
𝑝 *

 

,  𝑝(    )-   (      𝑝)

    ,} 

                    ∑     

 

   

        

Therefore,  ( )     
         (   )  Conversely, suppose that  ( )  

   
         (   ), then 

      
𝑝(   )

(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

                   (   )     

Setting  

     
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
               (   )     

and  

          ∑    

 

   

                                                                                  

we can see that  ( ) can be expressed in the form (5.3.5.3). This completes 

the proof of  the Theorem 5.3.5.1. 

Corollary 5.3.5.2 

The extreme points of the class   
         (   ) are the functions   ( ) and  

    ( )  given by (5.3.5.1) and (5.3.5.2) respectively. 
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5.3.6 Radii of close-to-convexity, starlikeness and convexity     

Firstly, the largest disk | |    ,        for functions in the class 

  
         (   ) to be close-to-convex in | |     is determined as follows.  

Theorem 5.3.6.1 

Let the function  ( ) defined by (2.2.2) be in the class   
         (   ). 

Then  ( ) is 𝑝-valently close-to-convex of order  ,     𝑝 in the disk 

| |    , where 

         {
(𝑝   ) (

𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )(𝑝   )
}

 
 ⁄

(       ) 

and   (      𝑝) is given by (2.8.3.6). The result is sharp with the extremal 

function  ( ) given by (5.3.1.4). 

Proof 

It suffices to show that  

      |
  ( )

    
 𝑝|  𝑝                 (| |    )                      (       ) 

Indeed, we have  

         |
  ( )

    
 𝑝|  ∑(𝑝   )     | |

 

 

   

                                             

Hence (5.3.6.2) is true if  

                ∑
𝑝   

𝑝   
     | |

 

 

   

                                                  (       ) 

By Theorem 5.3.1.1, and (5.3.6.3) is true if  

𝑝   

𝑝   
| |  

(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
            (       ) 

Solving (5.3.6.4) for | | (   ), we get the desired result (5.3.6.1).  
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Next, the largest disk | |    ,        for functions in the class 

  
         (   ) to be starlike in | |     is determined as follows.  

Theorem 5.3.6.2 

Let the function  ( ) defined by (2.2.2) be in the class   
         (   ). 

Then  ( ) is 𝑝-valently starlike of order  ,     𝑝 in the disk | |    , 

where 

          {
(𝑝   ) (

𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )(𝑝     )
}

 
 ⁄

           

(       ) 

and   (      𝑝) is given by (2.8.3.6). The result is sharp with the extremal 

function  ( ) given by (5.3.1.4). 

Proof 

It suffices to show that 

|
    ( )

 ( )
 𝑝|  𝑝                    (| |    )                   (       ) 

Indeed, we have  

    |
   ( )

 ( )
 𝑝|  |

 ∑        
  

   

  ∑        
  

   

|                   

 
∑      | |

  
   

  ∑      | |
  

   

                                                

Hence (5.3.6.6) is true if  

   ∑       | |
 

 

   

 (𝑝   )  ∑(𝑝   )     | |
 

 

   

                       

that is, if 
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 ∑
𝑝     

𝑝   
     | |

 

 

   

                                               (       ) 

By Theorem 5.3.1.1, and (5.3.6.7) is true if  

𝑝     

𝑝   
 | |  

(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
      (       ) 

Solving (5.3.6.8) for | | (   ), we get the desired result (5.3.6.5).  

Finally, the largest disk | |    ,        for functions in the class 

  
         (   ) to be convex in | |     is determined as follows.                                        

Theorem 5.3.6.3 

Let the function  ( ) defined by (2.2.2) be in the class   
         (   )  Then 

 ( ) is 𝑝-valently convex of order  ,     𝑝 in the disk | |    , where 

              {
(𝑝   ) (

𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

(𝑝   )(   )(𝑝     )
}

 
 ⁄

  

(       ) 

and   (      𝑝) is given by (2.8.3.6). The result is sharp with the extremal 

function  ( ) given by (5.3.1.4). 

Proof 

It suffices to show that 

    |  
     ( )

  ( )
 𝑝|  𝑝                (| |    )                  (        ) 

Indeed, we have  

 |  
     ( )

  ( )
 𝑝|  |

 ∑  (𝑝   )       
  

   

𝑝  ∑ (𝑝   )        
  

   

|      

  
∑  (𝑝   )     | |

  
   

𝑝  ∑ (𝑝   )     | |
          

   

                        

   Hence (5.3.6.10) is true if  
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∑ (𝑝   )

 

   

     | |
   𝑝(𝑝   )  ∑(𝑝   )(𝑝   )     | |

 

 

   

  

or  

   ∑
(𝑝   )(𝑝     )

𝑝(𝑝   )
     | |

   

 

   

                                   (        ) 

By Theorem 5.3.1.1, and (5.3.6.11) is true if  

 
(𝑝   )(𝑝     )

(𝑝   )
 | |  

(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

(   )
      

(        ) 

Solving (5.3.6.12) for | | (   ), we get the desired result (5.3.6.9).  

 

5.3.7 Class-preserving integral operators 

In the present subsection, further properties of the class 

  
         (   ) of functions under the generalized Bernardi-Libera-

Livingston integral operator defined in (5.2.7.1) are investigated. The closure 

property can be proven as follows. 

Theorem 5.3.7.1 

Let the function  ( ) defined by (2.2.2) be in the class   
         (   )  

Also, let    𝑝. Then the function  ( ) defined by (5.2.7.1) is also in the 

class   
         (   )  

Proof  

From (5.2.7.1) and (2.2.2), we have 

 ( )     ∑𝐴    
   

 

   

                                                     

where 

𝐴    (
  𝑝

  𝑝   
*                              (   )                



115 
 

Since    𝑝  we have 

  𝐴                                                (   )                

which, in view of Theorem 5.3.1.1, immediately yields Theorem 5.3.7.1.  

Remark 5.3.7.1 

Letting     𝑝 in Theorem 5.3.7.1, the following result is obtained. 

Corollary 5.3.7.2 

Let the function  ( ) defined by (2.2.2) be in the class    
         (   )  

Then 

 ( )      ∫
 ( )

  

 

 

                                              (       ) 

is also in the class    
         (   )  

Next, the largest disk | |    ,        for functions in the 

class   
         (   ) to be 𝑝-valent in | |     is determined as follows.     

Theorem 5.3.7.3 

Let    𝑝 and the function  ( ) be in class   
         (   ). Then the 

function  ( ) given by (5.2.7.1) is 𝑝-valent in the disk | |    , where  

         {
(
𝑝    
𝑝 *

 

(  𝑝),  𝑝(    )-  (      𝑝)

(𝑝   )(  𝑝   )(   )
}

 
 ⁄

 (       ) 

Proof 

Let  ( ) defined by (5.2.7.4). It follows from (5.2.7.1), that 

 ( )   
    

  𝑝

 

  
(   ( ))                                                                               

           ∑(
  𝑝   

  𝑝
*       

   

 

   

          (   𝑝)                                

In order to prove the result, it suffices to show that 

|
  ( )

    
 𝑝|  𝑝                                     (| |    )              (       ) 
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Indeed we have 

      |
  ( )

    
 𝑝|  | ∑(𝑝   ) (

  𝑝   

  𝑝
*     

 

 

   

|                       

    ∑(𝑝   ) (
  𝑝   

  𝑝
*    | |

 

 

   

                                      

which yields the desired inequality in (5.3.7.3), provided that 

∑
(𝑝   )(  𝑝   )

𝑝(  𝑝)
    | |

 

 

   

                                         (       ) 

since the function  ( ) defined by (5.2.7.4) is in the class   
         (   )  

then by Theorem 5.3.1.1, we have 

∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )

 

   

                              

Thus the inequality (5.3.7.4) will hold true if 

  
(𝑝   )(  𝑝   )

𝑝(  𝑝)
| |  

(
𝑝    
𝑝 *

 

,  𝑝(    )-  (      𝑝)

𝑝(   )
       

that is, if 

| |  {
(
𝑝    
𝑝 *

 

(  𝑝),  𝑝(    )-  (      𝑝)

(𝑝   )(  𝑝   )(   )
}

 
 ⁄

           (   ) 

which leads us precisely to the main assertion of Theorem 5.3.7.3. 

 

5.3.8 Integral means inequalities 

Application of Lemma 5.1 leads to the following integral means 

inequality theorem for functions belonging to the class   
         (   ). 
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Theorem 5.3.8.1 

Let    ,    ,   𝑝   ,    .  
   

 
/,    ,      ,      , 

      and 𝑝   . If  ( )    
         (   ), then for        and 

     , we have 

∫ | (    )|
 

  

 

   ∫ |    (  
  )|

 
  

 

                             (       ) 

where  

     ( )     
𝑝(   )

(
𝑝   
𝑝 *

 

,  𝑝(    )-   (      𝑝)

           (       ) 

and   (      𝑝) is given by (2.8.3.6). 

Proof 

Let  ( ) of the form (2.2.2) and     ( ) of the form (5.3.8.2), then we must 

show that  

∫ |  ∑     
 

 

   

|

 
  

 

   

  ∫ |  
𝑝(   )

(
𝑝   
𝑝 *

 

,  𝑝(    )-   (      𝑝)

 |

 

  

 

    

By Lemma 5.1, it suffices to show that 

  ∑     
 

 

   

   
𝑝(   )

(
𝑝   
𝑝 *

 

,  𝑝(    )-   (      𝑝)

             

Setting 

           ∑     
 

 

   

   
𝑝(   )

(
𝑝   
𝑝 *

 

,  𝑝(    )-   (      𝑝)

 ( )   

 (       ) 

from (5.3.8.3) and (5.3.1.1), we obtain 
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       | ( )|  |∑
(
𝑝   
𝑝 *

 

,  𝑝(    )-   (      𝑝)

𝑝(   )
     

 

 

   

| 

   | |∑
(
𝑝    
𝑝 *

 

,  𝑝(    )-   (      𝑝)

𝑝(   )
    

 

   

                   

 | |                                                                                               

                                                                                                   

which completes the proof. 

Remark 5.3.8.1 

Letting         and 𝑝      in Theorem 5.3.8.1, the integral means 

inequality for the class   ( ) is obtained as follows. 

Corollary 5.3.8.2 

Let     and      . If  ( )    ( ), then for       and      , 

we have 

∫ | (    )|
 

  

 

   ∫ |  (  
  )|

 
  

 

                                    (       ) 

where  

  ( )    
   

   
                                               (       ) 

Remark 5.3.8.2  

Letting     in Corollary 5.3.8.2, the following integral means result for the 

class   due to Silverman [61] is obtained. 

Corollary 5.3.8.3 

Let     and  ( )   . Then for       and        we have 

∫ | ( )| 
  

 

   ∫ |  ( )|
 

  

 

                                           (       ) 

where  

  ( )    
 

 
                                                        (       ) 
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Conclusion 

   

The history of starlike functions goes back to 1915, when this class was 

studied by Alexander [1]. The present researcher is mainly concerned with a 

study on some geometrical and analytical properties for certain classes of 

multivalent starlike functions. 

The researcher has achieved this goal by studying some basic concepts 

of analytic univalent and multivalent functions defined in the open unit disk 

and some of their related subclasses. Also, some linear operators are 

presented. Moreover, the technique of subordination was employed to 

introduce certain subclasses of the class 𝐴(𝑝) of 𝑝-valent functions in order to 

obtain the bounds of the coefficient functional |          
 |. At this place, 

the well-known class     
 ( ) and it’s a generalized class           

 ( ) defined 

by the fractional derivative operator     
       

 ( ) are studied. Further, a new 

extended class             
 ( ) of 𝑝-valent functions associated with the linear 

operator     
           

 ( ) is introduced. Furthermore, sufficient conditions for 

starlikeness and convexity are obtained by using different techniques. At this 

place, many well-known conditions for 𝑝-valent functions associated with the 

operator     
       

 ( ) are studied. Also, some new conditions for 𝑝-valent 

functions involving the operator     
           

 ( ) are investigated. In addition, 

certain subclasses of the class  (𝑝) of analytic and 𝑝-valent functions with 

negative coefficients are defined and studied to investigate coefficient bounds, 

distortion properties, convolution properties, closure properties, extreme 

points, radius of close-to-convexity, radius of starlikeness, radius of 

convexity, class-preserving integral operators and integral means inequalities. 

At this place, the well-known class   (𝑝  ) is studied and a new generalized 
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class   
         (   ) associated with a certain linear operator is introduced 

and studied.  

The mentioned above classes showed that the functions of these classes 

generalize the concept of starlike functions. For various values of the 

parameters, these classes reduced to classes of starlike functions.   

Overall, the researcher reached the following results: 

1. The careful research carried out earlier and in this thesis shows that the 

linear operators have many extensive and interesting applications in the 

theory of analytic and multivalent functions. 

2. Some well-know results are reduced as a special case from the main 

results signifying the work presented in this thesis.  
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Future work 

  

Through the results reached in this study, the researcher 

recommends the following: 

1- A number of problems of this type of study may be raised for various 

linear operators. For example, the operators of Ruscheweyh, Komatu, 

Sӑlӑgean and others.  

2- The operators which were used in this study may be applied for other 

fields of analytic functions such as Harmonic functions, meromorphic 

functions and others. 

3- Fractional calculus operators may be used for other fields of science 

such as partial differential equations, physics, engineering and others. 

Some suggested areas of research include 

1- A study on some classes of analytic functions associated with different 

linear operators. 

2- Differential subordination and supeordination. 

3- Analytic functions with negative coefficients. 
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