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Abstract

Abstract

If (X, ) is a topological space, I is an ideal on X and
T°(I) the topology finer than t induced by the ideal |,
then for any topological space B with a continuous
map p:X—B we call (X, t°(I)) the fibrewise ideal
topological space over B with fiber subspaces
{ Xy :b € B}; where X,=P-1(b) for all b € B.

The aim of this thesis is to define separation axioms in
fibrewise ideal topological spaces and to study some
of their basic properties. Also we discuss the main
concepts, the important results in the topic including
the relationship between these axioms and with the

known separation axioms.
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Introduction

Introduction

Fibrewise topological spaces theory, presented in the recent 20 years, as
a new branch of mathematics developed on the basis of General Topolog,
Algebraic Topology. It is associated with differential geometry, lie
groups and dynamical systems theory. From the perspective of category
theory, it is in the higher category of general topological spaces, so the
discussion of new properties and characteristics of the variety of fibre
topological spaces has more important significance [8].

Fibrewise topology can be thought of as the topology of continuous
families of spaces or maps.

A continuous map P: E — B, now is called fibrewise topological space
over B, and E(b) = P}(b) can be thought of as a continuous family
of spaces,b € B. The parameter space B is called the base space,
E(b) =P™(b) is the fibre over b [13].

Ideals in topological spaces have been considered since 1930. In 1990
once again Jankovie and Hamlett, initiated the application of topological
ideals in the generalization of most fundamental properties in general
topology, they studied separation axioms using the concept of ideals in

topological spaces [17].
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In 2018, fibrewise ideals was defined on fibrewise topology, and studied
some of its properties, and considered fibrewise local function for
a fibrewise space X over B using fibrewise ideal on X.

The aim of this thesis is to define the separation axioms in fibrewise ideal
topological spaces, and discuss some of their properties.

This thesis consists of four chapters:

Chapter one is an introductory considered as a background for the
material included in this thesis. It contains basic concepts, definitions,
properties and some theorems of topological spaces.

Chapter two consists of two sections. Section one introduces the
concepts of fibrewise topology. Also, it defines the fibrewise direct
product of fibrewise topology. Section two studies separation axioms in
fibrewise topological spaces, some examples are given, and interseted
properties.

Chapter three consists of three sections. Section one studies the
definition of fibrewise ideal and its properties. Section two defines the
fibrewise local function for a fibrewise space X over B. Section three
restricts the definition of a local function on each fibre X, over b € B
using a fibrewise ideal, and studies its properties.

Chapter four defines separation axioms in fibrewise ideal

topological spaces, introduces some examples and studies the properties
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of fibrewise ideal spaces and the relationships between them using

fibrewise maps. In addition, it proves several new results concering it.
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Chapter one : Preliminary Concepts

This chapter is designed to give the preliminary concepts needed to the
other chapters, and it is containing five sections.

1-1 Topological spaces:-

Definition: 1-1-1 [20]
Let X # @ and T < P(X)
(the collection of all subsets of X) such that the following three axioms
hold:
1- pe TandX € T.
2- If G, € T,fora € A,thenU {G,:a €A} € T.

3-IfG; €T, (i=123,...n),then N}L;G; €T
then T is a topology on X, the elements of T are called open sets, and

the pair (X, T) is called a topological space.

Examples: 1-1-2

1- Let X be any non-empty set,

T={X, @ }, then (X,T) is a topological space, T called the trivial
topology on X, and (X,T) is called a trivial space.
2- Let X be any non-empty set, T = P(X) (the power set of X), then T

a topology on X called The discrete topology on X, and (X,T), is called

a discrete space.
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3- Let X=R, T ={UcR:if xe U, then there is € >0 such that
(x—¢€,x+¢€)cU}. Then T is a topology on X, called the usual

topology and (IR, T) is called the usual space.
4- LetX=R",T={U S R™ifx € Uthenthereis € >0
with B.(x) € U}.Where B, (x) = {y € R":1llx —yll < &}
then T is a topology on R" called the usual topology.
Definition: 1- 1- 3 [20]
Let (X, T) be a topological space, then F is said to be closed set in

X iff it's complement is an open set.
Example: 1-1-4

Let X ={a,b,c,d}and T = {X, 0, {a}, {b}, {a, b}} , then the closed sets
in XareX,9,{a, cd}, {b, c,d},{c,d}
Theorem: 1-1-5 [20]

Let(X,T) be a topological space. Then:

I.  @and X are closed sets
ii. IfA,cXisclosed, fora € A,then N A, {A, : a € A}is closed.
iii. IfAjc Xisclosed (i= 1,2,3...n), then LnJAi Is closed.
i=1
Proof:

I. @ and X are closed, since their respective complements X and @ are

open.
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ii. LetA, c X be closed, fora € A. This implies that X —A,) € T
forae A.Also X — N{A:a € A} = U{X — A,:a € A} .Since
X—AL €T forae A,U{X—A, : a EA} € T.Thus {A,,a € A}

is closed
Iv. LetA; c Xbeclosed (i=1,23...n). Thisimpliesthat X —A; € T

n n
(i = 123...n). Also , X - UA =Nx-Ai) SinceX—A, €T
i=1 i=1

n n
(i=123..n) , [ 1X—=Ai) et Thus JAis closed.m
i—1 i—1

Definition: 1-1-6 [20]

Let (X, T) be a topological space and @ # A — X. The subspace
(relative) topology on A is T, ={ANG:Ge T}.(A,T,) is called
a subspace of (X, T)

Example: 1-1-7
1- Let (X,T) be a topological space and T = P(X).Let@d # Y C X,
then Ty = P(Y) is the discrete topology on Y.

2- If X is infinite set, and T the finite complement space (the cofinite

topology) i-e, T = {A: X \ A'is finite set} U @ . Let Y be a finite

subset of X, then Ty is the discrete topology on Y.
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Theorem: 1- 1-8

Let (Y, Ty) be a subspace of a topological space (Y, Ty), then E is
a closed set of Y iff there exists a closed set F of X, suchthat E=Fn'Y.

proof:

Let E be a closed subset of Y, then Y\E is an open subset of Y. So
there exists an open set A of X suchthat Y\E=ANY.Thus E=A°NnY,
that is there exists a closed set F = A, with E=F N Y. Conversely, letF
be a closed subset of X, such that YNF =E, then YNF°= Y\E .
Therefore Y \ E is an open subset of Y. So E is a closed setin Y.

1-2 Elementry Concepts:

Definition: 1-2-1[20],[16]

Let (X, T) be a topological space and A c X. The closure of A is the
set, A=N{FcX:ACFandFis closed}.
Theorem: 1-2-2 [20]

Let (X, T) be atopological space and Ac X. Thenx € Aiff xEGE T
impliesGNA =+ @
Proof:

Let x € Aand x € G € T . Assume that G N A = @ . This implies that
A < X\G and X\G is closed. Hence x € X\G, and X\G is a closed set

containing A, a contradiction. Conversely, suppose that x€e GE T

implies GN A # @ . Assume that x € A .Then there is a closed subset F



Chapter one : Preliminary Concepts

of Xsuchthat AcFandx ¢ F. Hence x € X\Fe Tand (X\F)nA = .
Contradiction. m
Theorem: 1-2-3 [20]

Let (X,T)be a topological space and A, B are subsets of X. Then the

following statements are true:
i. 0=0
ii. AcA
ii. (A)=A
iv. AUB=AUB
Proof:
d=N{FcX: @< FandFis closed } = @,since @ is a closed set.

SinceAc N{Fc X:AC Fandis closed} ,so ACA.

A= {F cX:ACFandFis closed} is closed,and A c K, Hence

@n{FCX:KCFandFisaclosed}zK

Since Ac Aand B c B by (ii), wehave AUBcAUB . SinceAUB ,

is a closed set, we have AUBS AUB . Also AUB is a closed

superset of A and B. Hence Ac AUBandBc AUB ,

which imply that AUB c AUB.Thus A U AUB.m

ws)
I
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Theorem: 1-2-4] 7]
Let X be a non-empty set and,
cl*: P(X)—>P(X) a map with the properties
) Accl*(A) foranyA c X.
i)  cl*(cI*(A)) =cl*(A) forany A c X.
iii)  c*(AUB) =cl*(A) U cl*(B) for any two subsets A, B of X .
iv) (@) =90
Then cl* is called a kuratowski closure operator and there is a topology

on X such that A is a closed set in X iff cl*(A) = A. The family
T={[c]*(A)]°:A€eP(X)} is a topology on X, for which

cl*(A) = A forany A C X.

Proof:

To show that T  is a topology on X

a) @ € T" because by i) we have X < cl*(X) and so cI"(X) = X.
Hence [c]*(X)]*= (X)=0 € T".
Also, X € T since cI*(@) = @ and so [c]*(®)]°=0 =X € T".
b) Let A, BE T, then since
[c*(A)]°Nn [cI*(B)]¢ = [c]*(A) ucl*(B)]*= [cI'(AUB) ¢ e T".
c) Let A, € T foralla € A.
Let S= U [cl"(A,)] we are going to show that

S = [cI"(K)]¢ for some K c X. Because

10
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* c . c N *
S=[ncl"(A,)]¢ ,wefind S°= wEA cl*(A,) C

cl*(A,) for each a.So by (iv)and(iii)cl*(S°) c

cl*(A,) for all a and therefor cl*(S°) c aQA c*(A,) =
S¢ Then by (ii) cl*(S°) = S¢andso S = [ cI*(S9)]€ €

T*. Therefore T* is a topology on X. To show cl*(A) =

A. First, A c cl*(A),since cl*(A)is closed in T and A c

cl*(A), so we have, A c cl*(A) =

cl*(A). Also since ( A)®is open in T*, we have A =

cl*(B)for some B c X, using (iv)and

A c A we find that cI*(A) c cl*(A) = cl* cI*(B) = cI*(B) = A. m
Definition: 1-2-5 [16 ], [7]

Let AcX. The interior (Int (A)) of A is the largest open set contained

in A, thatis Int (A) = U {U:Uopenand U c A}
Examples: 1-2-6

1) In R with the usual topology if A= {0,1}, then Int (A) = @
2) In R2 with the usual topology, A ={(x,y):y =sin(}/x),0 <x <1

ThenInt (A) =0
Definition: 1-2-7 [7]

Let A c X. The boundry d(A) of A is A n A¢

11
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Examples: 1-2-8

Let A=[0,1] € R with the usual topology, then d(A) = {0,1}
Definition: 1-2-9 [18]

A subset A of a space (X, T) is said to be compact if for every open

cover {U,: a € A} of A, there exist a finite subcover {Ug}iL, of A, such

that A c LnJ Uy
i—1
1-3 Open, Closed Maps And Continuous Maps:

Definition: 1-3-1 [7]

A map f: X — Y is called open (resp.closed) if the image of each open
(resp . closed) set in X is open (resp.closed) set in Y
Examples: 1-3-2
1) Let f: R*~ R be the projection mapping defined as f (x4, X,) = X4, then
f is an open map. But not closed.
2) If Y is a discrete space (all subsets are open) then every function
f: X— Y is both open and closed .
Theorem: 1-3-3 [7]

f: X — Yis aclosed map iff f(A) S f(A) foreach setAc X.
Proof:

If f is a closed, then f(A) is a closed, since f (A), € f(A) we abtain

f(A) € f(A) = f(A) , as regnired. Conversely, if the condition holds

and A is a closed, then f (A) c f(A) c f (4) = f (A), shows that

12
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f(A) =f(A), sothat f (A) isaclosed.m
Definition: 1-3-4 [16]
A function f : (X, T;) - (Y, T) is said to be continuous at a point

X € X iff for every open set V containing f (x) there is an open set U

containing x , such that f (U) cV.

We say that f is continuous on a set A € X iff it is continuous
at each point of A.
Definition: 1-3-5 [7]
Let (X, T) and (Y, T) be two spaces. A map f : X— Y is called

continuous if the inverse image of each open set in Y is open setin X .
Example: 1-3-6

A constant map f : X — Y is always continuous . Since the inverse
image of any open set U in Y, is either @ or X, and both are open.
Remark: 1-3-7 [7]

1) Iff:X->Yandg:Y — Z ,are continuous, so also is g 0 f : X— Z.

13
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2) If f: X — Y continuous and A c X is taken with the subspace
topology, then f /5 : A — Y is continuous, where f /4 is the restriction
offonA.

3) If f: X — Y is continuous and f(X) is taken with the subspace
topology , then f: X —f (X) is continuous .

Theorem: 1-3-8 [20]

If f: (X, 1) — (Y, T,) Is a function , then the following statements
are equivalent :

1- £1(C)is closed, where C is a closed in Y.

2- f* (U) €Ty, forevery U € T,.

3- f is continuous.

4- f(A) < f(A) , forevery A C X.

Proof:

We demonstrate the equivalence by establishing the cycle of

implications (1) - (2) - (3) = (4) — (5).

(1) = (2). Let U e T, ,then Y\U is a closed, which implies that £ (Y\U)

is a closed. Since f™* (Y\U) = f* (Y)\ f1(U) = X \ f}(U), we have that

(V) e T,.

(2) = (3). Letx € X and f (X) € UE T,. Then x € f™*(U) € T4, and since

f (FY(U)) c U. f is continuous at x and thus continuous, since X was

arbitrary.

14
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(3)> (4). Let AcX. Ifye f (A)and ye V € T,, theny = f (x) for
some xX€ A . Since f is continuous, there exists an open set U € T;,
such that x € U and f (U) c V. Also, x € Aimplies that there is
peEUNA.Thus f(p) € f(U) N F(A)c VN f(A). Hencey € F(4)
and f (4) c f(4).

(4)—(1). Let C be a closed subset of Y. Then f (f-7(©)) < f(f~1(C)) c C

= C. This implies that (f=1(C)) < f™ (C) and so f™(C) is a closed. m
The previous theorem characterizes continuous functions as those having
the property that the inverse images of open sets are open and the invers
images of closed sets are closed. However, continuous function does not
necessarily map open sets onto open set and closed sets onto closed sets,
as the following example illustrates.
Example :1-3-9

Let X be the set of real numbers and T={Q}U{G cX:

X\G is countable}, T is a topology on X called ( the Co - countable
topology), let Y =[0,1] and T, = {G N[0,1]:G € T}.
Then T, is the subspace topology : induced on Y by T.

X if x €[0,1]
0 otherwise

Let f:(R,T)— (Y, Ty) defined by f (x) = {

Then f is not continuous, since (0,1) € Ty, but f* [(0,1)] = (0,1) & T,

as R\ (0,1) is uncountable.

15
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Definition: 1-3-10 [20], [16]

A function h: (X, T) = (Y, T) is a homeomorphism (topological
mapping) iff h is one-to-one, and onto, and h, h™ are continuous.
Definition: 1-3-11 [20]

A property P of a topological space is topological property iff P is
invariant (preserved) under homeomorphisms.

Remark: 1-3-12 [20]

The relation (X,T) is homeomorphic to (Y,T*) is an equivalence

relation on the collection of all topological spaces.
Definition: 1-3-13
A function f: (X, T) — (Y, T") is said to be an embedding if it is

one-to-one, open, and continuous.

1-4 Product Spaces And Sequences In Spaces:

Definition:1-4-1

Let (X, T) be a topological space. A family B c T is called a basis
for T if each open set (that is, member of T) is the union of members of

B.
Definition: 1-4-2

Let (X,,T,) be a topological space for all a € I'. The topology

defined on the set X =]]..rX, whose subbase the collection

16
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S={m 1 (U):UisopeninX, ael'} is called the product topology or

the Tychonoff topology on X .Where Tig : [[qer X — Xg defined by.
T[B((x ) ) =xg is B the projection map.
87 aer

The Tychonoff topology has a base the collection

n
B={ N m(Ugy): UyisopeninXy, o € I,n €N}
i=1

Theorem: 1-4-3

If [Tqen X, 1S @ product space, then each projection map is continuous
and open.
Proof:

Let Jlq«ea X« be a product space, where g : [[ Xz — Xz be the
B- the projection map. If U is an open set in Xz, then (H[;1 U) is
a subbasic open set in [[qep Xo for all « € A, so mg is continuous, To
show Tz is an open mapping. Let V is an open subset in [[eep Xq.1f 2
€ Tg(v) . Then there exists X €V such that mz(x) =z i-e xg =z Let B
be a basic open set in []qeq X4 Such that xe B c V, then mgz (B) is open
inXg and z € mg(B) c mg(V). So g (V) is open.
Definition: 1-4-4 [20]

Let (X,T) be a topological space,{x,},en @ S€Quence in X, and x € X.

We shall say that {x,} ,en COnverges to x and write X, > x iff x € G € T,

17
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implies that there is ng € N such that x, € G for all n > ny, where

N ={1,2,3,...}. Asasequential limit, x is also designated by

limx,1—e x = lim x,
n—-oo n—-oo

Example: 1-4-5

Let R be the set of real numbers and let T be the cofinite topology on

R, letx, =nforallne N.IfxeRandx € G € T, then (R\G) is finite

and x, € G, foralln > ng, forn, € N. Thus x, — x forall x € R.
Theorem: 1-4-6 [20]
Let (X,T) be a topological space, A c X and X € X. If {X; }pen IS

a sequence in A, such that x,— X, thenx € A .
Proof:

Let (x,) nen b€ a sequence and converging to X, and x € G € T. By
Definition (1-4-4) there is ny € N such that x, € G, for all n > n,. Since
X, €A, forallne N,wehave GNA# @,andX € A.m

1-5 Separation Axioms:

Definition: 1-5-1 [20]

(X,T) is a To- space iff x, y € X with x # y implies that there exists

U € T such that either x e Uand y € X\U, ory € U and x € X\U

18
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X

Ty- space

Example/ 1-5-2

or

& -
""""""

Ty- space

Let X = {ab ,c} and T, = {0,X {a},{b},{a,b}} .Then (X ,T,) is

a Ty-space . Let T, = {@, X}, then (X, TZ) IS not a T,,-space.

Definition: 1-5-3 [20]

(X, T) is a T;-space iff x, y € X with x # y implies that there exists U,

Ve T,withxeU,ye X\Uandy eV, x € X\V

-
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Theorem: 1-5-4 [20]

(X, T) is a T;-space iff {x} = {x}, for each x € X.

19
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Proof:
Let (X, T) be a T;- space and x € X. If y € X\ {x}, then there exists
VE T such that yeV and xeX\V. Hence y¢ {x}and {x} ={x}. Conversely,

suppose that {x} = {x}, for each x€ X. Lety, z € X with y # z.Then

{y} = {y} implies that there exists V € T such that z € V, and y € X\V.

Also, {z} = {z} implies that there exists U € T such that y € U and

z € X\U.Thus (X, T) isaT;.space. m
Definition: 1-5-5 [20] [16]

(X, T) isa T, - space iff x, y € X with x # y, implies that there exists
U, Ve T withxeU,ye V,andU NV =0@. T, spaces are also called

Hausdorff spaces.

X o

- -
''''''

T, - space

20
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Example: 1-5-6

Let X be any non-empty set, T is the discrete topology on X, then

(X, T) is a T,-space “Hausdorff space”.

Clearly from the definitions that every T,-space is a T;-space and
every T;-space is a T,-space. The following theoems holds with every
Tifor i=0,1,2.

Theorem: 1-5-7 [20]

If (X,T) is a T;-space, then every subspace of (X, T) is also

a Ti- space, fori =0,1,2.
Proof:

We prove the theorem of the case i = 2, the other cases will be similar.
Let® # A cX,and x, y € A with X # y since x, y € X, there exists
U Ve Tsuchthat x e U,yeV,and U NV = @. Thus x € A n U,
ye AnV,and we have AnU)n (AnV)=0, sinceUnNV=0.
Hence (A, T,) is a T,-space. m
Theorem: 1-5-8 [20]

If X=T]]qer X, then X isa Ty-space iff X, is a Ty-space, for all

1=0,1,2.

21
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Proof:

We will prove the theorem for i = 2, the other cases will be similar.
= If = X =T]q.ep X, is a T,-space , then since for any a € A, X, can
be embedded as a subspace of X = [],ep X, and since every subspace of
a T,-space is a T,-space , so X, is a T,-space forall a« € A .

&: Suppose X, is a T,-space for all a € A, let X, ¥ € [Joenr Xa» XFY,
there exists B € A such that xg # yg. Since X is a T,-space , there are
disjoint open sets U , V in X containing xg , yg respectively, and hence
[Tg* (UV),IIg" (V) are open sets in [[qen X, containing x and y
respectively . SO [Jqep X, IS aT,-space. m
Definition: 1-5-9 [7]
(X, T) Is a regular space if for each closed subset A of X, and x is
a point of X not in A, then there exist two disjoint open sets one
containing A and the other containing x.
Example: 1-5-10
Let X = {a,b,c} and T = {@,X {b},{a, c}}, then (X ,T) is a regular
space.
Theorem :1-5-11 [20]

(X,T) is a regular space iff x € U € T implies that there exist V € T

suchthatx eV c V c U.
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Proof:

=>: Let (X,T) be aregular and x € U € T ,then X\U is closed and
there exists G;,G, € Twithxe G, and X\U c G, and G; n G, = 0.
Thus x € G; € X\G, c U. Also, G; < X\G, since X\G, is a closed.
Let V=G, . Now assume that x € U € T implies there exists V € T such
that xe Vc V c U. Let x € X and F ¢ X\{x}, with F closed. Then

x € X\F € T.Hence there exists V € Tsuchthatx € V ¢ V c X\F.
This implies that Fc X\V € T. And (X\V) NV = @. Thus (X, T) is

a regular space.m
Theorem: 1-5-12 [7]

Every subspace of a regular space is a regular space.
Proof:

GivenY c X, letB c Y beclosedinY,and x, € Y\B.ThenB =Y n A,
where A is a closed in X, and since A does not contain x, , there are
disjoint open sets U, Vin X, such thatx, e U, Ac V.

Then UNY and VNY are the required disjoint open sets of Y
respectively containing x, and B respectively. m
Theorem: 1-5-13 [7]

If X =]].en X then Xis aregular space iff X, is a regular for all

a € A.
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Proof:

= If X =[] o Xq Is regular, then implies that each X is regular

( A subspace of regular space is regular),since each X« is homeomorphic
to a subspace of X .

<=: Conversely, suppose each Xq is regular and that U = ] «ea Uq IS
a basic open set containing x. For each a we can pick an open set Vq in
Xa such that X« € Vo4 € V, € Us . Let V =[] aea Vo then V is
an open set in [Jaea X« and X € V € V c U. Therefore [] aea X« is
regular.m

Definition: 1-5-14 [20]

(X, T) is called a T5-space iff (X, T) is a regular and T; -space.

............
______

X

",
‘‘‘‘‘‘‘‘‘‘
------------

Theorem: 1-5-15

Every subspace of a T;-space is a T;-space.
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Theorem: 1-5-16

X =Tlyep Xa is a Ts-space iff X is a T;-space forall a € A .
Definition: 1-5-17 [20]

(X,T) is a completely regular iff x € X and A < X\{x}, with A is

closed, implies the existence of a continuous function f : X—I| with
f (x) =0andf(A)={1}, lis the unitinterval i-e |=[0,1]
Definition: 1-5-18 [20]

(X, T) is a Tychonoff (T%) space iff (X, T) is completelty regular,

T, -space.
Theorem: 1-5-19 [7]

Every subspace of completely regular space is completely regular.
Proof:

Let Y < X be a subspace , and letx € Y, Aisa closed in Y. since
A=Y NnF, where Fisclosedin X, x & A ,then x&Y NnF ,implies
x & F ,since X is completely regular there is a continuous function
f:X—>1,suchthat f(x)=0,f(F)=1.Letg=f/ythen g:Y—>I is
continuous and since A < F , then g(x) =0, g(A) = 1, thus Y is
a completely regular space . m
Theorem: 1-5-20

Every subspace of a Tychonoff space is a Tychonoff (T, ) space.
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Theorem: 1-5-21

If X = []qer X , then X is a completely regular iff X, is
a completely regular forallax € A.
Proof:

=>. Suppose X = []qea X« 1S cOmpletely regular space, since each
Xq can be embedded as a subspace of X = [[qea Xa-
So X« is a completely regular space for all o € A.
<. Suppose X, is a completely regular for all c € A . Let A be
a closed set in [Jqea X » X € A there exist a basic nbhd N, n i (U))
containing x and [N{L; Ty (U)INA= @, sox, & X\Uy for all
k , there exist a continuous function , fi : X, —1 such that fi (x4, ) =0,
fie (Ke \Uyc ) = 1.
But then fy 0 T, is continuous function, fx0 1y, = [Taen Xo =1 for
all k .

Let f: [Tqea Xo—1 defined by. f (y) = max {(fio me,)(¥)},_, -Then f

Is continuous, f (x)=0, f (A) =1.S0 [, e a X IS completely regular . m
Theorem: 1-5-22
X = J]qen X is a Tychonoff space iff X, is a Tychonoff space for

all a € A
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Definition: 1-5- 23 [20]
(X, T) is a normal space iff for every pair F,,F, of disjoint closed

subsets of X, there exists G,,G, € Tt with F;, € G; , F, < G, ,and
G1 N GZ = @
Example: 1-5-24

Let X ={u,v,zw}and T={0,{u}{u,v} {u,v,w}, X} .

Note that closed sets are @, {z},{w,z},{v,w,2},X, every non-empty
closed set contains z, so (X, T) is a normal space.
Theorem: 1-5-25 [7]

A topological space X is normal iff for any closed set F and open set
U containing F, there exists an open set V such that FE V€ V ¢ U.
Proof:

=>. Suppose X is normal and the closed set F is contained in the
open set U. Then k = X\U is a closed set which is disjoint from F. By
normality, there exist two disjoint open sets G and H such that F € G
and k €H. Since G € X\H we have G € (X\H ) = (X\H) € X\ K= U.
Thus G is the desired set.
< Now suppose the condition holds, and let F; and F, be disjoint
closed subsets of X. Then F; is contained in the open set X\F, and by

hypothesis, there exists an open set V such that F; € VE V € X\F,.
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Clearly, V and X\V are the two desired disjoint open sets containing F,
and F, , respectively. m
Definition: 1-5-26 [20]

(X,T) isa T,-space iff (X,T) is a normal T;-space.

L

. "
- Ll -
----------

aaaaa
.y a*
-------
-------------

T4-space
Theorem: 1-5-27
If X is a non-empty set, T,, T, are topologies on X, with T, c T,.
Then:
1) If (X,T,) is a Ty-space, then (X, T,) is a T;-space for i=0,1,2.
2) If (X, T,) is a regular space, then (X,T,) need not to be a regular
space.
3) If (X,T,) is a normal space, then (X,T,) need not to be a normal

space.
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Proof:

1) We prove the theorem for the case i = 2, the other cases are
similar. Let (X,T;) be a T,-space x# y in X, there exists two
disjoint open sets U, V in T; with XeU, yeV, since T, € T, .
So every open set in T, is an open set in T,. Therefore for every
pair of distinct points x, y in X, there exists two disjoint open sets
U, Vin T,, such that x € U, and y € V. Thus (X,T,) is
a T,-space.

2) For example, let X={a,b,c}, T,={0,X{b},{a c}},
T, = {0,X,{a}, {b},{a, b}, {a,c}} . Note that T, c T, but (X, T,)
IS a regular space , and T, is not a regular space , since closed
sets in (X ,T,) are @,X,{b},{c}{b,c}{a,c}, there is no open set
contain {b,c}, butnota.

3) For example , let X={a, b, c},and T,={0,X}, T, ={0, X, {a,b}
{b}, {b,c}}, note that (X ,T,) is a normal space but (X ,T,) is
not a normal space .m

Definition: 1-5-28 [20]

Let (X,T) be a topological space and A, B be subsets of X, A and B

are separated if ANB=ANB=0.
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Definition: 1-5-29 [20]
(X,T) is completely normal iff for every pair A, B of separated subsets

of X, there are disjoint open sets U and V with A c U, and B cV.

Definition: 1-5-30 [20]

(X,T) is a Ts-space iff (X,T) is a completely normal T, -space.

Ts-space
Theorem: 1-5-31 [20]
(X,T) is completely normal iff it is hereditarily normal i-e, each
subspace of (X,T) is a normal.
Proof:

=>:. Let (X,T) be a completely normal space and (A, T,) be any

subspace of (X,T). If C; and C, are disjoint subsets of A that are closed

in A, then there are closed subsets F; and F, of X suchthatC; = ANF;
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and C,=ANF,,thusC; c F, and C, c F, . This implies that C, N C, =
C,nC,= @, and C,, C, are separated in X. the complete normality of

(X ,T) implies that there exist G;, G, € T such that C; € G; , C, € G,

and G, N G, =@ .Finaly, C;,cANG, ETp,andC, cANG, € Ty

with (AN G;) N (AN G,) = @ . This estabishes the normality of (A, T,).

«: Conversely, let each subspace of (X,T) be normal, and let C; and C,

be separated in X. If A = X\ [(C; -C,)U (C, -C,)] has the relative
topology T, , then C;and C, are closed in A .The normality of (A, Ty,)
implies there exist An G, An G, € T, such that C; c An Gy,
C,cANn G, and (An G)N (AN G,) =0

This implies that (G; N G,) € (C; — C,)U (C, — C,).

letU; = G,N(X—C,) € TandU, = G, Nn(X—-C)) E T.

This establishes the complete normality of (X, T). m
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Fibrewise topological spaces
and separation axioms in

fibrewise topological spaces
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Chapter two/Fibrewise topological spaces and separation axioms in fibrewise topological
spaces

The purpose of this chapter is to introduce the concept of fibrewise
topological spaces, to study consider separation axioms in fibrewise
topological spaces, fibrewise To-spaces, fibrewise Ti-spaces, fibrewise
T,- (Hausdorff) spaces, fibrewise regular spaces, fibrewise completely
regular, fibrewise normal and fibrewise completely normal spaces, and
to give several results which are needed in the chapter of separation
axioms in fibrewise ideal topological spaces.

2-1 Definitions and examples:

Definition :2-1-1 [2],[ 15]

Let B be any non-empty set. Then a fibrewise set over B consists of
a set X together with function p: X — B. called the projection, and B is
called the base set. For each point b of B, the fibres over b is the subset
X, = p(b) of X.Fibres may be empty since we do not require p to be
surjective , also for each subset B™ of B, we regard Xg-== p*(B")
=Upep Xy is a fibrewise set over B~ with the projection determined
by p.
Remark: 2-1-2 [2]

Let X be a fibrewise set over B, with projection p. Then Y is
a fibrewise set over B, with projection p o q for each set Y and function

qQ Y - X
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Definition: 2-1-3 [2],[15]

If X and Y are fibrewise sets over B, with projections p and g
respectively, a function W:. X — Y is said to be fibrewise function if g
Y =p, in other words if ¥ (X,) € Y, for each b € B.

Definition: 2-1-4 [2],[1]

Let B be a topological space, then a fibrewise topology on
a fibrewise set X over B is any topology on X for which the
projection p is continuous.

Example: 2-1-5

LetX={x,y,z},B={a,b,c}andP:X — B beamap defined
by P(xX) = a, P(y)=b, and P(z) = c,let T,={X, ¢, {x}, {v}, {X, ¥}
be atopology on X, and T, = {B, ¢, {a}, {b}, {a, b}} be a topology on B,

then P : X —B is a continuous function . Therefore (X, T) is fibrewise

topological space over B.
Example: 2-1-6

If X =R with T the usual topology and B = R with the usual topology ,

P: X — B defined by P(x) = |x| ,then (X ,T) is fibrewise topological

space over B,andforany be R ;
{-=b,b}if b>0

X,= P*(b) = 1) if b< 0
{0} if b=0
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Remark: 2-1-7 [15]

The coarsest such topology is the topology induced by p, in which the
open sets of X are precisely the inverse images of the open sets of B; this
Is called the fibrewise indiscrete topology.

Example: 2-1-8

If X is any discrete topological space and B is any topological
space,and P : X — B is any map , then X is a fibrewise topological
space over B.

Definition: 2-1-9

Let (Xa, Ta) be a fibrewise topological space over B for all a € A, then

the product X = [],e4 Xa defines fibrewise spaces over B and equipped
with the family of fibrewise projection

PoOTto: [loen Xa = B. Where 7. [lyes X« > Xea iS the a - the
projection map and P« X«— Bis the projection of Xq.

Theorem: 2- 1-10

If (X, T,) is a fibrewise topological space over B, and T, is a topology

on X such that T; C T,. Then (X, Tz) Is a fibrewise topological space

over B.
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Proof:

Since every open set in Ty is in T, and since (X, Ty) is fibrewise

topological space over B, then the projection p: (X, T;)) — B is

continuous. So p: (X, T,) — B is continuous also. Therefore (X, T,) is

fibrewise topological space over B. m
Definition: 2-1-11 [15]

A fibrewise function ¥: X — Y, where X and Y are fibrewise
topological spaces over B is called:

a) Continuous if for each point x € X, where b € B, the inverse
image of each open set containing W(x) is an open set of X
containing X.

b) Open if for each point x € X, where b € B, the direct image of
each open set containing X is an open set containing ¥ (x).
Propositions: 2- 1-12 [1]

Let ¢: X — Y  be a fibrewise function, where Y is fibrewise
topological space over B, and X is a fibrewise set has the induced
fibrewise topology. Then for each fibrewise topological space Z,
a fibrewise function y :Z — X is continuous iff the composition

oy :Z — Y iscontinuous .
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Proof:

=>: Suppose that y is continuous. Letz € Z,, whereb € B, and V
open set containing (o y)(z) = Y, in Y. Since ¢ is continuous, ¢'(V) is
an open set containing vy (z)=x € X, in X. Since y is continuous ,
then w'(@'(V)) is an open set containing z € Z, in Z, and y'@'(V))
= (pow)™(V) is an open set containing z € Z,inZ.
<. Suppose that povy is continuous. Let z € Z,, where b € B and U
open set containing y(z) = x € X, in X. Since ¢ is  fibrewise function
implies that ¢ is continuous so ¢ is  open, ¢ (U) is an open set
containing o(X) = o(w(z) )=y €Y, inY .
Since gov is continuous. Then (poy)™ (p(U)) =y (U) is an open set
containing ze Z, inZ. m
Definition: 2-1-13

The fibrewise topological space X over B is called fibrewise closed
(resp.open) if the projection p is closed (resp. open) function.
Propositions: 2-1-14

Let ¢ : X —Y be an open fibrewise function, where X and Y are
fibrewise topological spaces over B. If Y is fibrewise open, then X is

fibrewise open.

37



Chapter two/Fibrewise topological spaces and separation axioms in fibrewise topological
spaces

Proof:

Suppose that ¢ : X—Y is fibrewise open function and Y is fibrewise
open, the projection py: Y— B is open. To show that X is fibrewise
open, we need to show the projection px: X — B is open. Now if Vis
open subset of X, , where b € B, since ¢ isopen, then (V) is open
subset of Y, , since py isopen, then py(e(V))isopenin B, but py
(e(V)) = (pyop)(V) = px(V) isopen in B .Thus px is open and X is
fibrewise open. m
Propositions: 2- 1-15

Let ¢: X =Y be continuous fibrewise surjection, where X and Y are
fibrewise topological spaces over B. If X is fibrewise closed then Y is
fibrewise closed.

Proof:

Suppose that ¢: X —Y is continuous fibrewise surjection and X is
fibrewise closed, the projection px: X — B is closed . To show that Y
is fibrewise closed, we need to show the projection py:Y—B is closed .
Let G be a closed subset of Yy, where b € B. Since ¢ is continuous
fibrewise , then ¢*(G) is closed subset of X, . Since px is closed,
then px(9™(G)) = (pxo ¢™)(G) = py(G) is closed in B. Thus py is closed

and Y is fibrewise closed. =
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Theorem: 2-1-16

If (X«,To) isa fibrewise topological spacesover B, foralla € 4.

P«: Xa = B isaprojection map for all o« € 4.
Then for any g € A, I, X« i a fibrewise topological space over B
with projection Pgomg.
Proof:

That is clear, since the projection map Pgz oms is continuous for all
pE A.m
Corollary: 2- 1-17

The product of fibrewise topological spaces over a topological space

B is a fibrewise topological space over B.

2-2 Separation axioms in fibrewise topological spaces:

Before we introduce the definition of fibrewise separation axioms
we introduce the following definitions.
Definition: 2-2-1

Let (X,T) be a fibrewise topological space over B, X,c X, b € B is

called trivial fibre subspace if X,=p™(b)= @ or one point set.

Xy, is the fibre space corresponding to b.
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Example: 2-2-2
If P: (R, T) — (R, T) is defined by P(x) = x* and T is the usual

topology on R.

{=Vb,Vb} if b>0
Then X, = p™(b) = § (0} ifb=0
1) ifb <0

Then @ and {0} are trivial fibre subspace over B.

Theorem: 2-2-3

If (X,T) is a fibrewise space over B. and p: X — B. the projection

map is injective. Then every fibre subspace is trivial i-e X, is empty or
one- point set.
Definition: 2-2-4

A fibrewise topological space (X, T) over B is said to be fibrewise

To-space if every non-trivial fibre subspace X, is T, -space, where b € B.
that is X, X, € Xpwhere b € B and X; # X,, either there exists an open

set in X, containing x; and does not contain X, in X or vice versa.

Ty - space
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Example: 2-2-5

Let X = B = R with the usual topology T and let i be the identity

projection function the (R, T ) is fibrewise T,- space over (R, T ) .

Here in this example X, = p™{b} ={b} is a trivial subspace for all b € R.

Theorem: 2-2-6
If (X,T) is a To-space and is fibrewise space over BThen (X,T) is

fibrewise Ty-space over B.
Proof:

Forany b € B, X, is fibre subspace of X, and since every subspace of
a To-space is a To-space, so X, is a To-space. m

Definition: 2-2-7
A fibrewise topological space ( X ,T) over B is said to be a fibrewise

T;- space if every non - trivial fibre subspace X, is T;- space .That is
if X;,% €X, ,whereb € B and Xx; # X, , there exist open sets U, U,

inxb,SUChthat X1 € Up, X &Uland X € Uy, , Xy €U,
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......

........

Fibrewise T,- space

Example: 2-2-8

Let X =B ={a, b}. Let t1 = {X, ¢, {a}, {b}(the discrete topology
on X), T2 ={X, ¢ }( the trivial topology on B).
p: (X,T1) — (B, T2) defined by p(x) = X, then p is continuous, and for

any z € B, X, = p(z2) = {z} is a trivial fibre subspace. So (X, T) is

a fibrewise T,-space over B.

Theorem: 2-2-9

If (X,T) is a Ty-space and is a fibrewise space over B. Then (X,T) is
a fibrewise T,-space over B.
Proof:

Forany b e B, X, is a fibre subspace of X, and since every subspace

of a T;- space is a T;-space. So X, isa T;-space. m
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Theorem: 2-2-10

Let (X, T ) be a fibrewise topological space over B. Then (X, T) is
a fibrewise T;- space iff {x} ={x} foreveryx € X,.
Proof:

=>: Let (X,T) be a fibrewise T;- space overBand x € X, ify #x,y €

Xp \{x} , then there exists an open set V € T, suchthaty e V,and x ¢ V.
Hencey & {x} and {x}={x} .
«=: Conversely, suppose that {x} = {x} for each x € X,. Lety, z € X,

with y # z. Then {y} = {y}implies that there exists V € T such that
z€e V andy ¢ V. Also, {z} = {z} implies that there exists U € T

such thaty € U and z ¢ U. Hence (X,T ) is a fibrewise T;- space over B

by (definition 2-2-8). m
Definition: 2-2-11

A fibrewise topological space X over B is called a fibrewise
T,(Hausdorff)-space if every non-trivial fibre subspace is T, (Hausdorff).
Thatis if X3, X, € X, where b € B and X; # X,, there exist disjoint open

sets Uy, U, containing X;, Xo in Xy,
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Fibrewise T,- space
Example / 2-2-12
If X = R, T the cofinite topology and let B = R with the cofinite
topology and P : X — B is defined by P(x) = x* then p is continuous .

So ( X,T) is fibrewise topological space over B, and for any b € B

{=Vb,Vb} if b>0
Xs = 4 {0} if b=0
1) if b<0

If b>0, X, ={—Vb,Vb} is non-trivial subspace and the subspace is
discrete subspace of X , then (X ,T) is a fibrewise T,-space , but not

T,-space .

Theorem: 2-2-13

If ( X,T)is aT,-space and is a fibrewise space over B .Then (X,T)

Is a fibrewise T,- space over B .
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Proof:

Forany b € B, X, is a fibre subspace of X , and since every
subspace of a T,-space isa T,- space, so X, isa T,- space . m
Proposition: 2-2-14
Let ¢ : X > X be an embedding fibrewise function , where X and
X are fibrewise topological spaces over B .If X is fibrewise Hausdorff .
Sois X.

Proof:

Let X1, X, € Xy, Where b € B, and x; #X,.Then ¢ (X)), @ (X)) € X
are distincet. Since X is fibrewise Hausdorff, there exist disjoint open
sets V4, V, containing ¢ (x1) , @ (X) in X'y, there inverse images (V1) ,
o '(V,) are disjoint open sets containing x;, X, in X, , and so X is
fibrewise Hausdorff space . m
Theorem: 2-2-15

If X« is a fibrewise T,- topological spaces over B ,with projection Pq
for alla € A ;then forall g € A, T ¢4 X, IS a fibrewise T,- topological
space over B with projection Pgomgs.

Proof:

Suppose Xq is a fibrewise T,- space over B, for all « € A and with

projection Py : X«—B thenforany B € A,Pgpomp: Myey Xa > B s

continuous . SO []q.ex Xa is a fibrewise topological space over B with
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projection Pgoms . Now for any b € B, X, = (Pgomp)™ (b) = s (p75 (D))
= { (Xa)aer X« € Xa, Xg€ p7(b) }is a subspace of [Juen Xa and since
the product of T,-spaces is a T,-space, and every subspace of T,- space
Is a T,-space , so it follows that every fibre subspace is a T,- space , and
hence [],ep Xa 1S fibrewise T,- space over B . m

We now proceed to consider the fibrewise versions of higher Separation
Axioms starting with regularity.
Definition: 2-2-16

A fibrewise topological space X over B is called a fibrewise regular
space if each non-trivial fibre subspace is regular, that is for each point
X € Xy, where b € B and for each open set Vof x in X, there exists
neighborhood W of x in X, such that x € Wc W nX, c V.
Remark: 2-2-17

If X is fibrewise regular space over B, then X5 is fibrewise regular
space over B™ for each subspace B” of B .

Theorem: 2-2-18

If (X,T) is aregular space and a fibrewise topological space over B,

Then (X ,T) is a fibrewise regular space over B .
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Proof:

Since every subspace of regular space is regular, so it follows that

every fibre subspace is regular and hence (X,T) is fibrewise regular

space. m
Proposition: 2-2-19

Let ¢ : X > X be afibrewise embedding function , where X and
X are a fibrewise topological spaces over B . If X  is fibrewise regular,
then so is X.

Proof:

Let x € X, where b € B and let V be an open set containing x in X.
Then V = ¢ (V) where V' is an open set containing X =@ (x) in X
since X" is fibrewise regular there exist an open set U™ containing X~
in X', such that X', N cl(U) c V. Then U = ¢}(U") is an open set
containing x in X, such tha X, n cl(U) < V, and so X is fibrewise
regular.m

The class of fibrewise regular spaces is fibrewise multiplicative in
the following sense .

Proposition: 2-2-20
If Xq is a fibrewise regular topological space over B, with projection

Pofora € A. Then X=[],es Xa is fibrewise regular topological space

over B, with projection Pgomg forany p € A.
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Proof:

Suppose X is a fibrewise regular space over B, for all a € A and with
projection Py : Xa— B . Thenforany B € A, Pgompg = Iy Xa > B
Is continuous , so I,e4 X« IS a fibrewise topological space over B,
with projection Pgomp . Since forany b € B, X, = ( Pgomp)™ (b) =

5 (P (D) = {(X Juer X € X, Xp € p(b) }is a subspace of
[Taea X« and since the product of regular spaces is a regular space , and
every subspace of regular is a regular, then [],esa X« 1S a fibrewise
regular space over B. m
Proposition: 2-2-21

Let ¢ :X —Y be an open, closed and continuous fibrewise surjection,
where X and Yare fibrewise topological spaces over B. If X is fibrewise
regular, thensois Y.
proof:

Let y €Yy, whereb € B and let V be an open set containing yinY,
pick x € ¢}(y). Then U = (V) is an open set containing x , Since X is
fibrewise regular , there exists an open set W of b and an open set U
containing x in X, such that X, n cl(U) < U .Then Y, N ¢( cl(V)
c ¢ (U) = V. Since ¢ is closed, then ¢ (cl(U)) = cl(p(U")) and since
@ is open , then ¢ (U) is an open set containing y. Thus Y, is

a fibrewise regular. m
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Definition: 2-2-22

A fibrewise topological space (X,T) over B is called fibrewise

Ts-space iff (X, T) is fibrewise regular ,T;-space .

X B

Fibrewise T;-space

Example: 2-2-23

Let X = [ -2m, 2m] with the cofinite topology and B=[-1,1]
with the trivial topology, let p (X) =sinx be the projection map for
any be[-1,1], Xy ={x€eX: sinx = b} is finite subset of X. So

Xp is  a discrete space for all b € B, and therefore X, is fibrewise
Ts-space , that is X is a fibrewise Ts-space over B . However (X,T) is not

Ts-space.

Theorem: 2-2-24
If (X, T) is a Ts-space and is fibrewise space over B .Then (X ,T ) is

a fibrewise Ts-space over B .
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Proof:

Since every subspace of a Ts-space is a Ts-space, so it follows that

every fibre subspace is T3, and hence (X,T) is fibrewise T;- space.m

Theorem: 2-2-25
Let (X,T )be a fibrewise Ts-space over B, then (X, T) is fibrewise

T,- space .
Proof:

Let X1, X, be distinct points of Xy, where b € B, since X is fibrewise
Ts-space, then there is open set U containing X; or X, in X, , let U
containing X, but not x,, since X is T;-space , so F = X,\U is closed set
containing X, but not x; in X, . Using definition of Ts-space, we get two

disjoint open sets G, H such that x; € Gy, X, € H in X, thus ( X, T ) is

T,- space . m
Definition: 2-2-26

A fibrewise topological space (X, T) is said to be fibrewise completely
regular if every non-trivial fibre subspace is completely regular , that is
for each point x € X, , where b € B, and for each closed set A in X,
X & A ,there exists a continuous function f, : X, — | such that f,(x) =0,

fb(A) =1 .

50



Chapter two/Fibrewise topological spaces and separation axioms in fibrewise topological
spaces

Remark: 2-2-27

1) If X is fibrewise completely regular space over B, then X'g is
fibrewise completely regular space over B, for each subspace B of B.

2) Subspaces of fibrewise completely regular space are fibrewise
completely regular spaces.

Theorem: 2-2-28

If (X, T) is a completely regular and (X,T) is fibrewise space over B,

then (X, T) is fibrewise completely regular space over B .

Proof:
Since every subspace of completely regular space is completely

regular, so it follows that every fibre subspace is completely regular ,

and thus (X ,T) is fibrewise completely regular space over B. m

Proposition: 2-2-29

Let ¢ : X—>X be a fibrewise embedding,where X and X are fibrewise
topological spaces over B.If X is fibrewise completely regular , then
sois X.
Proof:

The proof is similar to the proof of proposition (2-2-19), so it is
omitted . m

The class of fibrewise completely regular spaces is fibrewise

multiplicative inthe following sense .
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Theorem: 2-2-30

If (X Ta) is fibrewise completely regular space over B, with projection

Py for all o € A. Then X= ][] 4ea X « 1S @ fibrewise regular topological
space over B with projection Pgomgfor any B €A .
Proof:

Suppose Xq is a fibrewise completely regular space overB,for all a € A
and with projection Py : X« —B,then forany g € A, Pgomg : [[pes Xae—B
Is continuous .So []q4ea X« IS a fibrewise topological space over B, with
projection Pg oms such that X, =(Pg 0 mp) ™ (b) for any b € B , then
Xy = (Pgomp)™ (0) =5 (Pt (0)) ={ (X o)acr: X« € X, Xg € p(b) }is
a subspace of [],e4 Xaand since the product of completely regular spaces
Is a completely regular space , and every subspace of a completely
regular space is a completely regular space , so it follows that every fibre
subspace is a completely regular space and hence [J,es Xa IS fibrewise
completely regular space . m
Proposition: 2-2-31

Let ¢ :X—Y be an open ,closed and fibrewise surjection ,where X and
Y are fibrewise topological spaces over B. If X is fibrewise completely

regular, thensoisY.
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Proof:
Lety €Yy, ,where b € B and let VVy be an open set containing y, pick
X € Xp, S0 that Vq = go'l(Vy) IS an open set containing x .Since X is
fibrewise completely regular there exists a nbhd W of b and an open
set Uy, containing x in Xy, and a continuous function 2 : Xy — | sach
that Y, N Uyc 27(0) and X, N (X — Vx) © 27(1),and Yy n (Yo -V,)
c 0'1). m

Definition: 2-2-32

A fibrewise topological space (X,T) over B is called fibrewise Tz -space

Iff (X,7) is fibrewise completely regular, T,-space.

Definition: 2-2-33

A fibrewise topological space X over B is called fibrewise normal
if each non-trivial subspace of X is normal , that is for b € B and disjoint
closed sets H and K of X, , there exist a pair of disjoint open sets U,V
containing H and K respectively.
Example: 2-2-34

If X= R =B with T;, T, are the usual topology, P:(X, T1)—>(B, T,) is

defined by P(x) =1 forall x € R, then

X ifb=1

— p-l _
Xb‘P(b)_{@ if b#1

Then Xiis fibrewise normal space over B .
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Remark: 2-2-35

If X is fibrewise normal space over B , then Xz« is fibrewise normal
space over B” for each subspace B” of B.
Proposition: 2-2-36

Let ¢ : X > X~ be a closed fibrewise embedding , where X and X
are fibrewise topological spaces over B. If X  is fibrewise normal, then
sois X.
Proof:

Let b be a point of B and let H , K be disjoint closed sets of X, , then
o (H) ,o (K) are disjoint closed sets of X', , since X', is fibrewise normal
there exists disjoint open sets U,V of X, containing ¢ (H) , ¢(K) in X7, .
Then ¢*(U) and ¢*(V) are disjoint open sets of X, containing H
and K. m
Definition: 2-2-37

A fibrewise topological space over B is called fibrewise T,-space iff

(X, T) is fibrewise normal, T;-space.
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Xb U.@ ........ ﬁ

Fibrewise - T,- space
Theorem: 2-2-38
a) Closed subspaces of fibrewise T,.spaces are fibrewise T,.spaces.
b) Every fibrewise T,-space is fibrewise Ts-space.
c) A product of fibrewise normal spaces is not necessarily fibrewise
normal.

Theorem: 2-2-39

If (X, T) is a fibrewise topological space over B and p: X — B the

Projection map is bijective, then every fibre subspace is trivial i-e X, is
empty or a one-point set .

Corollary: 2-2-40

If (X, T) is a fibrewise topological space over B and p: X — B is

bijective , then (X, T) is a T;-fibrewise topological space for all i=0,1,2,3,4
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Definition: 2-2-41
(X, T) is fibrewise completely normal over B iff every non-trivial

fibre subspace is completely normal ; that is for every pair A , B of
separated subsets of X, , there are disjoint open sets U and V of X, , with
AcUandB cV.
Example: 2-2-42
Let X =B ={a, b, c} with Tx = { ¢, X, {a}, {b,c}} and T is the trivial
topology , p : X — B is the identity projection , then (X ,T) is fibrewise

completely normal over B .

Theorem: 2-2-43

If (X,T) is completely normal space and (X,T) is a fibrewise

topological space over B, then (X,T) is a fibrewise completely normal

topological space over B.

Theorem / 2-2-44

A fibrewise topological space (X ,T) over B is fibrewise completely

normal topological space over B iff every subspace is fibrewise normal

space over B .
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Proof:
= let X be a fibrewise completely normal space over B , and let Y be
a subspace of X .Let A, C €Y be disjoint closed subsets. Then clearly
ANC=ANC=AnC=¢, so by complete normality there are disjoint
opensets U,V € X ,suchthat Ac U, C € V. TakingU nY and
VN Y,we have disjoint open sets in the subspace topology Y containing
A and C, respectively inY. It follows that Yis fibrewise normal space over
B.
<= Suppose every subspace of X is fibrewise normal space over B , and
let A, C € X be separated subsets ,sothat ANC=ANC=¢.LetY
be subspace containing A and C . Since Y is normal , there are disjoint
open sets U ,V € Y suchthat A€ Uand C< V. Thensince A € A and
C c C, it follows that X is fibrewise completely normal space over B .m
Theorem: 2-2-45

A subspace of fibrewise completely normal space over B is fibrewise
completely normal space over B.
Proof:

By definition every subspace of X is normal, the same holds for every

subspace A of X (as a subspace of A is also one of X, hence normal).
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Definition: 2-2-46

A fibrewise topological space (X, T) over B is called Ts-space iff

(X, T) is fibrewise completely normal T;-space .

Fibrewise - Ts- space over B
Example: 2-2-47
Let X = B =Rwith T1, T2 are the usual topology of the real line
P: (X T1)— (B, T2) is the identity projection function , then (X T1) is
fibrewise topological space over B . Consider the two open intervals
A:(O,é)and C:(%,1).Thesetsdonotintersect: An C= @ ,but
the closures,A=[0, %] , C= [% , 1] with A n Cz{%} . Nevertheless

A and C are separated because AN C= @ =AnNnC.AandC have the

Ts property because A and C themselves are disjoint open sets.
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Theorem: 2-2-48

Every subspace of fibrewise Ts- space over B is fibrewise Ts- space
over B.

Proof:

Since every fibrewise Ts-space over B is fibrewise completely normal
Ti-space over B , by theorem (2-2-46) , and every subspace of fibrewise
Ti-space over B is fibrewise T;-space over B . So every subspace of
fibrewise Ts- space over B is fibrewise Ts-space over B .m

By the above theorems we write the following result :-
Result: 2-2-49
I. Every subspace of fibrewise Ts- space over B is fibrewise
T,4- space over B .

Ii. Every fibrewise Ts- space over B is fibrewise T,4- space over B .
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If 1isan ideal on a topological space (X,T), a topology on X can be
constructed called an ideal topology induced by the ideal | and, denoted
by the * -topology or T*(1) or T*(I, T).

The triple (X,T"1) or the pair (X,T*(l)) are called ideal topological space,
and if (X ,T) is a fibrewise topological space over B ,then (X, T*(l)) or

(X ,T%,1) is a fibrewise ideal topological space over B.

This chapter introduces the definition of fibrewise ideal topological
space, studies some of their properties, and discusses the definition of
fibrewise local function for a fibrewise topology with a fibrewise ideal.

| used the references [1],[2],[3], [5], [6], [15] and [22]

3-1 Fibrewise ideals

Definition: 3-1-1[2]

Let B be any set, and X be a fibrewise set over B, a non-empty
collection | of subsets of X, is said to be fibrewise ideal on X, if it
satisfies the following conditions:

) If A;€l,and A, c A;, then A€ |

i) If A;el,and A, €1, then A;UA, € I.
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Examples: 3-1-2

1)

Let X = {a, b, c} be a fibrewise set over B, | = {@, {a}}, then |
is fibrewise ideal on X,

Let X be a non-empty fibrewise set over B, then | = {@} is
a fibrewise ideal on X over B.

Let X be a non-empty fibrewise set over B, then | = P(X) is
a fibrewise ideal on X over B.

The class {AS X :Vx € Xy, X € A} whereb € B is an ideal

on the fibrewise set X which we denoted by I,

Lemma: 3-1-3 [2]

Let ¢: X— Y be a fibrewise function, where X and Y are fibrewise

topological spaces over B. Let I, and J, be two fibrewise ideals on X and

Y respectively (for b € B) then:

)

If ¢ is fibrewise surjection, then J, € ¢ (Ip).

If ¢ is fibrewise bijection, then ¢ (l,) = Jp.

Let E CY, and E € J, then foreveryy € Y, y & E. Since ¢
Is a fibrewise surjection, then ¢ (X,) € Y, , implies for every y
€@ (Xy),y &E.Thus forevery x € Xy, X & ¢'(E), implies

@ (E) € 1y, then ¢*(Jp) S I,. Thus J, € @ (lp).
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i) Letgo : X — Y be afibrewise bijection and let A€ ¢ (I) , then
©(A) € I, implies for every x € X, X & ¢ (A) , then ¢(X) & A,
for all xeXy ,since ¢ is onto,then for every yeY,there is Xe X, ,
such that @(x) =y & A for everyy € Y, , implies A€ J,. So
@(lp) € Jpand from (i) thus ¢ (I,) = Jp. =
Lemma :3-1-4 [2]
Let W:X—Y be a fibrewise injective, where X and Y are fibrewise
topological spaces over B. If | is any fibrewise ideal on X, then
YA)={W¥ (A):Ae l}isafibrewise ideal on Y.

3-2 Fibrewise local function with respect to fibrewise ideal topology.

In this section we will define fibrewise ideal topology using fibrewise
local function. First we give the following definition.
Definition: 3-2-1[2]
Let (X,T) be a fibrewise topological space over B, with | as an ideal on
X. Then for all A€ P(X).A'(I,T)={xe X:AnU¢ I for each neighborhood
U of x } is called a fibrewise local function of A with respect to I and T.

We will write A(1) or simply Afor A*(1,T).
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Examples: 3-2-2 [2]
) If (X,T) is any fibrewise topological space over B, I = {@}, then
A" =cl(A) forany AcC X.
i) If (X,T) is any fibrewise topological space over B, 1= P(X),
then | is an ideal on X and A" = @ for any AC X.
Using the results of [8],[13]
Lemma: 3-2-3
Let (X,T) be a fibrewise topological space with1 and J are ideals on

X, and A and B be subsets of X . Then:
a) If ACB,then A'c B’
b) If 1 <], then A" () S A(D)

c) A'=cl(A") c cl(A) (A’is closed subset of cl(A) )

d) (AUB)'= A'UB’

e) A-B =(A-B)-B’

f) If Ue T, then UnA =UNUNA) € (UnA)
9) If C €1, then (ANC)'=A'=(A-C)

h) =0

i) (A=A
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Proof:

a)

b)

d)

e)

Suppose Ac B, x ¢ B, then there exists U€ T, such that B n Ue 1.

Since ANU € BNU, then AnUE 1. Hence x ¢ A". Thus A'c B’
Suppose that x¢A'(I). Then there exists U T, such that ANUE I .

Since I € J, then AnUE ] and x¢ A"(]). Therefore A'(]) € A™(]).
We have A'C cl(A*) in general . Let x € cl(A*), then AN U # @
for every UE T, x € U.Therefore , there exists some ye A'n U and
Ue T,y € U. Since ye A", Ancl(U)¢ I and hence x€ A". Hence x
€ A”. Hence we have cl(A*)S A" and hence A'= cl(A*), Again . Let
X € A'=cl(A*) = {x € X : U n A ¢ I for any open set contains x}
c{xeX:UnA+0}=clA).

It follows from (a), (b) and (c) that A'U B'c (AUB)".To prove the
reverse inclusion , let x ¢ A'U B’. Then x belongs neither to A”,
nor to B”. Therefore there exists U, ,V, € T such that U,n A€ | and

V.NB €1 since | is additive , then (Uyn A )U (VN B) €

]

Moreovere since | is hereditely and (U,nA) U (V,n B) =

(UxsnV,) N (AUB )=(Uyn V, N A)U (Uyn V, N B) c (UyNA ) U
(Vxn B) e1.So (Uyn V,)Nn(AUB) € ], since (Uyn V,) € T, SO

x € (AUB)". Hence we abtain A'U B” = (AUB)".
We have by (d) A= [(A-B) U (AnB)]” = ( A-B)" U (AnB)'c

(A-B)UB". Thus A-B < (A-B)-B".By (a),(b) and (c),
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(A-B) € A" and hence (A-B)- BCA-B. Hence A-B'=
(A-B)-B".
f) If UE T, then UNA=Un {x € X : AnV ¢ | for any nbhd V of x}

={xeU. AnVelforanynbhdVofx}={x:UnAnV &l
for any nbhd V of x} = U n (UNA") € UnA”.

g) SinceC €1, by (a), (b) and (c), C'= @. By (e) A'= (A-C)and by
(d (AUC)=A"UC =A"

h) Since@={xeX:0NU ¢1}=0¢,thenp’ =0

) AY={xeX:UNnA ¢I,U€e t}and sinceUNn A CAC
{xeX:AnU¢I}=A"then(A) CA .m

Now we are ready to define fibrewise ideal topology by using the

following proposition.

Proposition :3-2-4

Let (X,T) be a fibrewise topological space over B, and I is an ideal on
X. Then we define a map cl’(.) :P(X)—>P(X) by cI’/A= clI'(A) (I,T) =

AUA'(I, T)for all A€eP(X).

The map cl () is a kuratowiski closure operator.
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Corresponding to the ideal I on the fibrewise topological space (X,T) ,
and so there exists a topology on X given by T (I,T ) = { UZS X :

(cI'U)°® = X\U}. Which is finer than T and called the fibrewise ideal

topology induced on X, by the ideal I.

Proof:

Using theorem (3-2-3) it follows that :

i. IfACB,sinceACB, AUA'CBUB".Socl(A)C cl'(B).

i. cl'(AuB) = (AU B)U (AU B)’, since ( AU B)'= A"U B, so
( AUB)U(AUB) = ( AU BJUA'U B= A U AU Bu B'=
cl'(A) U cl'(B).

iii. cl"(Cl'A)=cl(AUAY=(AUAMNW(AUA)=AUA UA"
U (A", since (A)=A s0oAUA"UAUA=AUA=Ccl'(A).

iv. c'(@=0ud=pUp=0.

Therefore the map is the kuratowiski closure operator and hence by

theorem (1-2-4) it follows , there is a topology T'(I) or T (I ,T) induced

by the ideal I and is finer than the topology T, so (X,T°(I)) or (X ,T’,I)

is a fibrewise ideal topological space.m
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Definition: 3-2-5
If X is a fibrewise topological space and | is an ideal on X, then the

topology defined by the above proposition is called the fibrewise ideal

topology.

Remark: 3-2-6
Note that T'(I) = T(I,T) = {U €X : (cI'U)* = X\U}. Also cl'(A) =
AU A'(1,T), forany Ac X .
Definition: 3-2-7
Let (X,T', I) be a fibrewise ideal topological space over B . A subset A
of X'is said to be:
i. *-openor l-openif A € T (I).
ii.  *-closed, or I-closed if it's complement is *-open (I-open) .
Examples: 3-2-8
1) Let X=B={a, b, c, d}. Let Tx = Tg = {0, X, {a}, {a, b}.{a, b, d}}.
Define the identity projection p: (X, Tx) > (B, Tg) ; p(X) = x for each

xeX .Then X is fibrewise topology and let I = {@ ,{d}} is fibrewise ideal
on X . Now let A ={c,d}, then A°= {a, b} and (A% = {c}, then

cl'(A® = AU A" = {c, d}, so (cI'(A)° = A°{a, b}.Thus A° is

*_opensetin T (I), implies A is *-closed .
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2) let (X,T) be a fibrewise topological space over B , with fibrewise

ideal I on X, then:

1)

i)

i)

If 1= {@}, thencl'(A) =cl (A). So T (I, T) = T.

If 1= P(X), then cI'(A) = A. So T'(I,T) = is the fibrewise
discrete topology.

If X ={a, b, c}, Txis fibrewise topology over B ={@ , X, {a},
{b,c}}, 1,J are fibrewise ideals on X over B. such that
|={ ¢ {a}}, J={0 ,{b}}, and let A = {a , b}, then in T(I) ,
A'(1,T) = {b,c}, so cI'(A) = AUA™={a ,b, c}, then cl (A)= A ,
then A is not I-closed (*-closed) . But in T'(J) , A"(J,T)= {a},
then cl"(A) = AUA'= {a, b}.Thus cl'(A) = A, so A is J-closed
(*-closed) set ; implies A® = {c} is J-open(*-open) set .Then
{c} is J-open (*-open) set in T (J). But not I-open (*-open) set
in T ().

using [14],[15] to write the following definition

Definition: 3-2-9

Let (X, T*(I)) be fibrewise ideal topological space , and let AcX . Then

a point xeX is called an I-limit for A iff each I-open set U containing x,
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Un (A\{x}) # @. The set of all I- limit points of A is denoted by
I- limit A .
Example: 3-2-10

Let X={a,b,c,d}, T={0, X {d},{a,c} {a,c,d}}and

[={0{b}}, ]={9, {c}} are fibrewise ideals on X, and let A={a , c},
then the I-open sets are{d}, {a, c}, {a,c,d} @, X thenais I- limit A .
Because for each I-open set U containsa, Un( A\{a}) # 0, since
{fa,cin({a,c}{a}) #9d,{a,c,d} n{a, c}\{a}) + 2.
But a is not J-limit A. Because J-open sets are {a},{d}{a, c}.{a,d},
{a, c, d}, @, X. Then there is a J-open set U such that U n( A{a}) = @ it
is {a}n ({a, c}\{a}) =@ . Thus a isnot J- limit A .

Definition :3-2-11

A map f: X —>Y iscalled I-open (*-open) (resp I-closed (*-closed) if

the image of each I-open (*-open) (resp I-closed (*-closed)) setin X is
I-open (*-open) (resp I-closed (*-closed)) setin Y.
Lemma: 3-2-12 [2]

Let v : (X ,T) — (Y,6) be continuous fibrewise function , where X

and Y are fibrewise spaces over B. Then y: (X, T (1)) > (Y, ) is

a continuous fibrewise function for any ideal I on X ..
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Proof:

Since y : (X ,T) — (Y, &) is continuous fibrewise function , then for
every openset VinY , ¥'(V) isan open in X, thatis ¥*(V) € T.
Now consider v : (X, T (1)) = (Y,8) is fibrewise function , since T (1)
is finer than T, then every open set in Tis in T (1), so for every

open set V in Y, ¥ (V) is an open set in X .Thus ¥(X, T (1)) >(Y.5)
Is continuous fibrewise function .
Definition: 3-2-13

A map f: X — Y is called I-continuous (*-continuous) if the
inverse image of each I-open(*-open) set in Y is I-open (*-open) in X .
Example: 3-2-14

A constant map f: ( X, T1) =>(Y , T2) is always continuous as map

f:(X,Ti(D)) =>(Y, T2())) . Where I, J are any arbitrary two ideals on

Xand Y respectively.

Proposition: 3-2-15 [2]

Lety: (X, Ty, 1) =>(Y, T, ,y(l)) be a continuous fibrewise injection,
where X and Y are fibrewise spaces over B, and | be a fibrewise ideal
on X. Then y: (X, T;, D—=>(Y, T, , w(l)) is I-continuous (*- continuous)

fibrewise function .
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Proof:

Let U® € T;(y(l)) .Thencl'(U)=U=UuUU", so U (y(l)) €U and
U°c (U (w(1)))°. For any y € U, there exists a neighborhood V of y such
thatUnNV ewy(),so y (UNnV)el,andsoy'(U)nyi(V) el
Therefor y*(y) ¢ (v*(U))" and y'(y) € (y}(U"))¢ . Thus y*(U%) <
(v'(U)) and so w(U) € (y(U)" =y (V) and cl'(y(V)) =
viU) U (v'(U))= y'(V) . Thus (w'(U))° € Ti(1) but y'(U%) =
(y*(U))°. Then y*(U%e T;(1). Hence v is I-continuous (*-continuous) .m
Lemma: 3-2-16 [2]

Leto : (X,T,1) —>(Y, 4, o)) be open continuous fibrewise function

over B, where X,Y are fibrewise topological spaces over B,with
a fibrewise ideal 1 on X . Then ¢™(E") = (¢™(E)) ", for each subset E C .
Proof:

Let x € 9 (E). Then ¢ (x) € E’, so for every neighborhood V of
o x)InY ,VnE¢&oe(l). Since ¢ is open function , then for each
neighborhood U of x in X, ¢(U) is a neighborhood of ¢ (x) in Y, and
also ¢ (U) N E & ¢(1) then ¢™ (¢ (u) N E) & I, implies U n ¢(E) & I,
for each neighborhood U of x in X . Hence x € (¢(E)). And therefore
0 (E) € (¢7(B)"
Conversely, let x € (¢™(E))". Then for every neighborhood U of x in X,

Un ¢™(E) ¢ | . Since ¢ is continuous function , then for every
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neighborhood V of ¢(x) inY, ¢ (V) n ¢™(E) & I, then (¢ (V) Ne™(E))
¢ ¢ (1), impliesthat V N E & ¢(l ), for every neighborhood V of ¢(x) in
Y, hence ¢ (x) EE", then x € 9 (E") . Thus (¢ (E)) € (¢(E)) . m
Proposition: 3-2-17 [2]

Leto: (X, T, ly) — (Y, d, J,) be a continuous fibrewise bijection,

where X and Y are fibrewise topological spaces over B , with fibrewise
ideals 1 , J on X , Y respectively , then the following statements are

equivalent :
1) o (X, ‘E*(Ib) ) =(Y, 8 (Jp)) is a homeomorphism.

2) o (A)=¢(A) VAC X

Proof: (1) ->(2)

Lety & ¢ (A). Then ¢(y) € A’, implies there is a neighborhood U
of ¢(y)in X ,such that ANnU €y, then ¢(A NU) € o(ly) = J, , and
o(A) N o(U) €J,, since ¢ is fibrewise homeomorphism then ¢(U) is
a neighborhood of y in Y and also y & (¢(A))” .S0 (¢(A)) S ¢(A).
Conversely , let y ¢ (p(A))’, then there is a neighborhood W of y in Y
such that (A) NW € ¢(J,) then An ¢'(w) €1, , and ¢'(y) € o™ (w)
since ¢ is fibrewise homeomorphism then ¢*(w) is a neighborhood of
@ (y) in X . Therefor ¢™'(y) €A". S0y ¢ ¢(A") .Hence ¢(A") S (p(A)) .

So finally we have (A" = (¢p(A)) .
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(2) >(1) let U° € T (Ip) then U € U and ¢(U) S o) by (2) ,

(e(U))=o(U) € ¢(U),and ¢(U)=o(U) U (p(U))=cl'( p(U)), hence

(e(U))° €8 (Jy) . Thus ¢ is open function . Similarly , we prove that
ot (Y, 8 Jy) = (X, T(l,)) is an open function, and so ¢ is

a homeomorphism. m

3-3 Fibrewise local function over beB and the generated fibrewise

topology over B on Xp:

Definition: 3-3-1 [2]
Let (X, T) be a fibrewise topological space over B. with fibrewise
ideal I on X, if b € B with Xy# @, then Ay(1, T) ={xe X,: AnU ¢,

for each neighborhood U of x}. Will be called fibrewise local function of
A over b.

When there is no chance for confusion we will simply write Ag(l) or
Ay, for AL(1,T). And we define the closure operator on X, , to be

cl'(Ay) = AU Ay , for every AcX , where A,= An X, , and hence
it generates a new fibrewise topology on X, over b to be
Ty, = { Ap € Xp: (cI'Ap)" = (Xo\ Ay)} which is finer than Ty, .
Notations: 3-3-2

If | is an ideal on X over B, then

) Lb={ACS X:VX€EX,, Xx&A}
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i) Ix, ={AcXy:A€el}={AnX, A€l}

i) Iy, ={ASXs:X=Xg=P"B) }
Example: 3-3-3

Let (X, T) be a fibrewise topological space over B. such that ,
X={1234} T ={ 0, {4}{1,3}{1,3,4}, X} with a fibrewise ideal

| = {9, {1}} on X, let A, = {2} for any be B, then A= {2}, implies

cl'( Ap) = A, UA, ={2}, so cl'( Ap) = Ay, and so A, is I-closed (*-closed)

in T'(1), then Ty, € T (Iy). Butif 1={ @}, then A’y =cl( Ay), implies
cl"(Ap) = cl(Ap) , then T ({@}y) = Tx,.And if I = p(X) on X, let A, ={1,3}

for any b € B , then A,'= @ and hence cl’( A,) = Ay, then T (P(X)) is the

fibrewise discrete topology on X, .

Lemma: 3-3-4
Let (X, T) be a fibrewise topological space over B with fibrewise

ideal 1 on X, then for every AC X and any b € B.

1) Ay =Xy N A

2) () ={XnG: GET(I)}=T", .
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Proof:
1) Since A, € Xy and A, € A", then A, S XN A,
Conversely, let x € X,n A", then x € X, and x € A", implies x € X,
and for each neighborhood U of x, ANU €1,s0 x € A, then
XpN A'C A, Hence A= XpN A,
2) Let (Ay)° e T, (I), then cl'( Ap) = Apand cl'( Ap) = AyU Ay, then
A, = AU A, since A, = Xpn A and Ay = X,n A" that's implies
Ay = ( XpnN A) U (XN AY) = Xpn(A UAY) = X, ncl (A), and so
A= Upep Ab = Upes(Xo N cl'( A)) = XN cl’( A) = cl’( A),hence
A° € T'(1). Then every element (A, )° € T, (1) is an element in Tj, .
Lemma: 2-3-5
Let (X,T,l) be a fibrewise ideal topological space over B with

fibrewise ideal I on X , then X, = X, for all be B iff | n T = {@}.
Proof:

= Let for each be B, X, = X,.Then for every x € X, UNn Xy ¢ 1,

for each open set U containing x , then U & I for every U € T , that is

implies I n T ={0}.

«=: Conversely, let | N T = {@}, then X = X and so X,= X,N X = Xpn X
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Theorem: 3-3-6

Let (X,T, I) be a fibrewise ideal topological space over B with

a fibrewise ideal  on X, and A € X then:

1)

U{ A, ;be B} =(U{A,;be BY)= A"

Nn{A, :be B}=(n{A,;be B})'=¢

Since A, = XpN A, then UA, = U( XpN A") = U( Xpn{ XE X:
UnA¢IlforanynbhdUofx})=u{xeX,nX:UNA &I for
anynbhdUof x} = u{xeX,: UnA¢Il for any nbhd
U ofx}=U{A,:beB} = (U{A,: be B}) = A"

NA, = N( XN A) = N( XyN{ XE X : UN A ¢ I for any nbhd U
of x}=n{xe Xy,nX,UNnAgI for any nbhd U of x }
=n{xe X,NX :UNA¢I for any nbhd U of x }= n{ A :

be B}=(n{A,:bEB}) =0 .m
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The aim of this chapter is to study separation axioms in fibrewise
ideal topological spaces. particularly, define To-spaces, T;-spaces,
T,-spaces, Ts-spaces , T4-spaces , and Ts-spaces in fibrewise spaces in the
context of ideal topological spaces .

In addition, to discuss some of the operations of separation axioms,
products of fibrewise ideal topological spaces , and some theorems of
continuous fibrewise functions on separation axioms in fibrewise ideal
topological spaces.

4-1 Preliminary

In this section I used definitions in [11] , [12] and [19]
Definition: 4-1-1
A fibrewise ideal | is said to be:
1) Fibrewise condense or T- fibrewise boundary if T n |1 ={@}

2) Fibrewise condense if Po(X) N | = {@}, where Po(X) is the family

of all open sets in a fibrewise ideal topological space (X, T'(1))

Notation: 4-1-2
The set of all open sets of a fibrewise ideal space (X , T (1)) over B

containing a point xe X is denoted by lo(X ,x).

79



Chapter four/ Separation axioms in fibrewise ideal topological spaces

In the section we used [4], [5], [9], [10], [11],[12], [14], [19], and [21]
to define sepanation axioms in fibrewise ideal

4-2 Fibrewise ideal T,- topological spaces:

Definition: 4-2-1
A fibrewise ideal topological space (X,T (1)) over a topological space

B is said to be fibrewise To-space if every non-trivial fibrewise ideal
subspace is Ty-space i-e, for any distinct pair of points in Xy, there is
an l-open (*-open) set containing one of the points but not the other.
Example: 4-2-2

If X =R, Ty, is the cofinite topology,and B =R, T, is the trivial

topology , and p: (X, T:) >(B,T.),p(x)=x*,and | ={ AC R, A is

a finite subset of R } . Then forany AC R,

« _ (A, if A isinfinite
A(I’T)_{(b, if A is finite

So cI'(A)=AUA (I, T)=4 ,s0 T =T, the cofinite topology .

{=vbvb} if b>0
But for any be B, Xy,= {0} if b=0

1) if b< 0

Hence every non-trivial fibrewise ideal subspace is discrete and so

(R, T (1) is a fibrewise ideal T,-space over B .
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Theorem: 4-2-3

Let (X, T) be a fibrewise topological space over B, and | is fibrewise

ideal space on X , then ( X, T (1)) is fibrewise T,-space iff for each pair

of distinct point x,y of X {x}#{y}

Proof:
=: Let (X, T (1)) be a fibrewise To-space over B , and x , y be

two distinct points in X . Then there exists an I-open set U containing
x does not containing Yy, or there exists an I-open set containing vy
and does not containing x . Let x € U, y& U, where U is I-open. Then
X\U is a closed set contains y and does not contain X . Thus
{y} € X\U, x¢ {y}.Thus {x} # {y}

«: Let x, y be distinct points in X, ,where be B and {x} # {y}.
Then there exists at least one point of X belong to any one of the two

sets, and not the other, let x€ {x}, x & {y}. So x € X\{y}, since X\{y}
is an open set does not contain y . So (X, T (1)) is a fibrewse T,-space

overB. m
Theorem: 4-2-4
Every subspace of fibrewise ideal T,-space over B is a fibrewise

ideal To-space over B.
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Proof:

Let Y, be a non-trivial subspace of a fibrewise ideal T-space

(X, T(1)) over B and x , y be two distinct points of Yy . Then either

there exists an I-open set U in X such that xe U and y¢U or there
exists an l-open set V in X such that x € V and y € V, then either
UnY,=U, is l-open in Yy,with xe U, yg U, or VNY, =V,
is an I-open in Y, with y €V, x& V. Hence (Y, Ty( Iv)) is a fibrewise
ideal To-spaceoverB . m

Definition: 4-2-5

Let (X, T), (Y, o) be two fibrewise topological spaces over B , and |

be a fibrewise ideal on X, a function f: (X, T (1)) > (Y, 8) is said to

be point fibrewise I-closure one-to-one iff for x ,y € X, , b € B such

that {x} # {y}, then cI({f (X)}) # cI({f (Y)}).

Theorem :4-2-6
Let (X, T) and (Y, d) be two fibrewise topological spaces over B and |
Is fibrewise ideal on X ..

If f:(X,T1)—(Y,8) is apoint fibrewise I-closure one-to-one and

(X, T (1)) is fibrewise ideal To-space over B , then f is one-to-one .
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Proof:
Since (X, T (1)) is fibrewise ideal To-space over B , then {x} # {y} for
any x #yin Xp, beB . But fis point I-closure one-to-one implies

cl({f xX)})= cl{f (y)}) ,and so f(x) #f (y) . Thus f is one-to-one . m

Theorem: 4-2-7

If f:(X,T () > (Y,d) is a function from fibrewise ideal T,-space

(X, T(1)) over B into a fibrewise topological space (Y, 8) over B .Then

f is point I-closure one-to-one iff fis one-to-one.
Proof:
=>. By Theorem (4-2-6) it is clear if f I- closure one-to-one, then fis

one-to-one.

&: Assume f: (X, T (1)) > (Y,d) is one-to-one such that (X, T(1)) is
fibrewise ideal Ty-space over B, and (Y, d) is fibrewise topological space
over B, for each pair of distinct points x ,y of X, beB , then f (x) #f (y)
since (X , T (1)) is fibrewise ideal T,-space over B, by Theorem (4-2-3)

{x} # {y} and so cl({f(x) }) # cl ({f(y)}).This implies f is point I-closure

one-to-one . m
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Theorem :4-2-8
Let (X, T) and (Y, ) be two fibrewise topological spaces over B and |
is fibrewise ideal on X and J is fibrewise ideal on Y .

If f: (X, T (1) (Y,5 () is a fibrewise injective continuous , function ,

and Y is fibrewise ideal To-space over B . Then (X, T (1)) is fibrewise

ideal To-space over B.
Proof:

Let x and y be any two distinct points of X, , be B , since f is
fibrewise injective and Y is fibrewise ideal T,-space over B, there exists
an l-open set U, in Y such that f (x) € U, and f (y) € Uy or there exists
an l-open set U, in Y such that f (y) € U, and f (x)& U, , with

f (x) # f (y) . By fibrewise I-continuonity of f, then f*(U,) is I-open set
in (X, T(1)), such that x € f(U,) and y¢ f(U,) or f *(U,) is I-open set
in (X ,T°(1)), such that y € f *(Uy) and x& f *(Uy) .Thus (X, T (1))is

a fibrewise ideal To- topological space over B .m

4-3- Fibrewise ideal T;- topological spaces:

Definition: 4-3-1
A fibrewise ideal topological space (X, T (1)) over B is a fibrewise

ideal T,-space over B if every non-trivial fibre subspace is T;-space i-e,
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for any distinct points x,y of X,, there exists a pair of I-open sets in X,
one containing x but not y and the other containing y but not x .
Example :4-3-2

Let X = R, T, is the co-countable topology , B = R, T, is the trivial

topology , and | = { A R : Ais countable}. p: ( X, T:) »>(B, Ty

1, if xe@

defined by p(X):{o if x¢Q

Then p is continuous and for any be B

Q ,ifb=1
Xo=p'0)=14q ,ifb=0
@ otherwise

Then Xy is a discrete ideal subspace of (R, T, if b =1 and X; is
a co-countable ideal subspace of (R, T,) if b = 0 .Hence every non-trivial

fibre subspace is a T;-space , so (X , T (1)) is a fibrewise ideal T;-space

over B.

Theorem: 4-3-3

If a fibrewise ideal topological space (X, T (1)) over B is fibrewise

T1-space over B, then each one point set is I-closed in X.

Proof:
Let (X, T (1)) be a fibrewise T;-space over B, and let x €X, if y €X,

with y= X, there exists two I-open sets such that x € U, , y € Uy, and
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X & Vy,, ye V, . Hence ye V, c X\{x} . So X\{x} is a union of I-open
sets. Then {x} is I-closed m

Theorem :4-3-4

Let X be a fibrewise T;-space over B, and f: (X, T) — (Y.,5 () is

an I-closed surjective function . Then (Y,8 (1)) is fibrewise ideal T;-space
over B.
Proof:

Suppose y € Y. Since f is surjective, there exists a point x € X such
that y = f (x). Since X is fibrewise T,-space over B , {x} is closed in X.
Again by hypothesis, f ({x}) = {y} is I-closed in Y. Hence Y is fibrewise
ideal T,-space over B. m

Theorem :4-3-5
If (X, T (1)) is fibrewise infinite T;-space over B, and x € I-limit A for

some Ac X, then every I-neighborhood of x contains infinitely many
points of A .
Proof:

Let x € I-limit A and suppose U is a I-neighborhood of x, such that

Un A'is finite . let UnA ={ X3 X3, X3 Xn} = C. Clearly C is closed set

. Hence V = (UnA)\(C\{x}) is I-neighborhood to the point x and
VN(A\{x})= @ which implies that x & I-limit A, which is a contradiction

to our assumption.Therefore the given statement in the theorem is true . m
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Example: 4-3-6
Let X={a,b,c d},T={X 0, {b}, {a b}, {b,c} {ab,c}{abd}}

Is fibrewise topological space over B, with fibrewise ideal 1 ={ @, {d}},
and let A ={ a,b} then a is I-limit A, since every I-open U containing
a, Un( {a,b}\{a}) # @. But b is not I-limit A, since there is I-open {b}
containing b such that { b}n ({a,b}\{b}) =0

Theorem: 4-3-7

Let (X, T"(1)) and (Y, 8°(J)) be two fibrewise ideal topological spaces
over B, and f: (X, T (1)) »>(Y,8(J) be an injective and I-continuous

function . If (Y, 8°(J)) is fibrewise T;-space over B, then (X, T'(1)) is

fibrewise T,-space over B.
Proof:
The proof is similar to the proof of Theorem (4-2-10). m

Theorem :4-3-8
In the fibrewise ideal topological space (X ,T (1)) over B, if X is

fibrewise ideal Ti-space over B . Then X is fibrewise ideal Ty-space
over B.

Proof:

Let (X, T (1)) be a fibrewise ideal T;-space over B , and letx , y € X, ,

where b € B such that x+ y , since X, is fibrewise ideal T;-space , then
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there exists open sets U,V such that U containing x but not y and

V containing y but not x, then X is fibrewise ideal Ty-space over B. m

4-4 Fibrewise ideal T," Hausdorff" topological spaces:
Definition: 4-4-1
A fibrewise ideal topological space (X , T (1)) over B is said to be

fibrewise ideal T," Hausdorff "-space if every non- trivial fibrewise ideal
subspace is T,-space i-e , for each pair of distinct points x,y of X,,
there exists a pair of disjoint open sets in X, , one containing x and the
other containing y whereb € B .

Example: 4-4-2

Let X = R, T; the usual topology on R, B = R with T, the trivial

topology , if p: (R, T1) = (R, Ty) defined by p(x) = x°
let 1={AC R, Aisafinite subsetof R }.
Then A'(1, T) = { x € R: UnA ¢ | for any open set U containing x} =

{/T if A isinfinite set
) if A is a finite set

So T = T is the usual topology

{(=vbvb} if b>0
For beB, X, = p'®)={ {0} if b=0
1) if b <0

So every non-trivial subspace is a T,-space .

Thus ( R, T*(I)) Is fibrewise ideal T,-space over B .
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Theorem: 4-4-3
If (X,T) is a fibrewise T;-space over B , then (X ,T (1)) is a fibrewise

ideal Ti-space over B for i=0,1,2.

Proof:

The proof is obvious, since every T (1) is finer than T and the result
follows from Theorem (1-5-27). m
Theorem: 4-4-4

Let (X, T), (Y,5) be two fibrewise topological spaces over B and I, J

are fibrewise ideals on XY respectively .

If f: (X, T() > (Y, 8(@)) is injective open and continuous, and

(Y, 8°(3)) is fibrewise ideal T,-space , then (X , T (1)) is fibrewise ideal
T,-space over B.
Proof:

Since f is injective, f (X)# f(y) foreachx,y € X, , and x# vy .
Now (Y, 8°(J)) being fibrewise ideal T,-space , there exists I-open sets
G,HinY,, where b € B, such that f(x)eG,f(y)eH, and Gn H
=@.LetU=fYG) and V =f"(H) .Then by hypothesis , U and V are
l-open sets in X, . Also, x € f Y(G) = U,y e f'(H) =V, and UnV =

f 1(G) nf *(H) = @ .Hence (X, (1)) is fibrewise ideal T,-space over B .m
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Corollary: 4-4-5

Let (X, T (1)), (Y,8°(J)) be two fibrewise ideal topological spaces
over B, If f:(X,T°()) - (Y,8(J)) is injective and I-closed and (Y,58"(J))

is fibrewise ideal T,-space over B, then (X, T (1)) is fibrewise ideal

T,-space over B .
Theorem :4-4-6

If f: (X, T () —> (Y,8Q)) is I-continuous , (Y, 8 () is fibrewise
ideal T,-space over B, then the set { (X¢,X») : f (X1) =f (xo) } is I- closed
in XxX .
Proof:

Let A={(Xy, X2) : f (X)) =T (X2) }. If (X, Xp) € (XX X)N\A, then
f (x)) # f (x2) .Since (Y,8°(J)) is fibrewise ideal T,-space , there exists
disjoint 1-open sets V3, and V, such that f (x;) € V;for j=12, then by
I-continuity of f, Thus (X;, X2) € f (V1) x f (V) € lo(Xy, X,) , since
the product of two open sets is open set . Therefore f(V;) x (V)
c (Xx X))\ A. It follows that (Xx X)\ A is I-open , and hence A is
I-closed setin Xx X . m

Theorem : 4-4-7

Let (X, T (1)) and (Y,8"(J)) be two fibrewise ideal topological spaces

over B,and f: (X, T (1)) > (Y,8(J)) is injective, surjective and I-open,

90



Chapter four/ Separation axioms in fibrewise ideal topological spaces

then (Y,8°(J) is fibrewise ideal T,-space over B if (X , T (1)) is
fibrewise ideal T,-space over B.
Proof:

Let yi, Y- € Y} such that y,# y, . Then f *(y;) and f ™(y,) are different

points of X, . Since f is surjective there exists X;, X, € X, such that

f(x) = y1, f (X2) = ¥ and x.# X, from hypothesis (X ,T (1)) is a fibrewise

ideal T,-space , so there exists U,VE T such that x, € U, x, € V and

UnV =@ . This implies that f (X)) =y, €f(U), f(Xx)) =y, € f(V). Since
f isl-open, then f(U),f(V) €&, and f is injective, f(U)NT(V)
=f(UNV)=0.Thus (Y,5 () is fibrewise ideal T,-space over B.m
Theorem: 4-4-8

In fibrewise ideal T,-space over B a sequence converges to unique
point.
Proof:

Assoming that x and y are two distncet points and ( x,) converges to x

and y . Since (X, T (1)) is fibrewise ideal T,-space over B, there exists U,

V €T suchthatx € U,y € Vand UnV =@ . Since ( X,) converges to x

and U is neighborhood of x , then there exist n; € N such that x,e U for
all n = n; Since (x,) converges to y and V is a neighborhood of y , then

there exist n, € N such that x, €V for all n = n,, let np = max{ny, n,}
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then for all n= ny, X, €Uand Xx,eV.Hence UNV=#@.This is
a contradiction. m

Theorem: 4-4-9

Let A be a compact set in a fibrewise ideal T,-space (X ,T (1)) over B,

then A'is I-closed .
Proof:

Let x € A°. Foreachy € A, we have X #y. So there are disjoint
I-open sets U and V. So that xe U and y €V. Then {V:y € A} is

an l-open cover of A . Let {Vi, V,,...... V.} be a finite subcover .

n
Then n v; isan l-open set containing x and contained in A°. Thus
i=1

A®is l-opensetand A is I-closed set .m

4-5 Higher separation axioms in fibrewise ideal topological spaces:

The aim of this section is to study higher separation axioms in
fibrewise ideal topological spaces over B.
Definition: 4-5-1

A fibrewise ideal topological space (X,T (1)) over B is said to be

fibrewise ideal regular, if every non- trivial fibrewise subspace is regular.
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Definition: 4-5-2
A fibrewise ideal topological space (X, T (1)) over B is said to be

a fibrewise ideal Ts-space if every non- trivial fibre subspace is regular
and T,-space .
Example: 4-5-3

Let X = Z is the set of integers, T, is the discrete topology on Z ,

B = Z isthe setof integers numbers T, is the discrete topology , | ={@}

is fibrewise ideal on X.

1 ifxe Z*

p:(X.T1) > (B,T,) defined by p(x):{o if x ¢ Z*

then p is continuous and forany b € B

z* if b=1
Xp=p*(b) ={Z" U {0} if b=0
1) otherwise

Where Z" = {1,2,...... YV, 2R = ~2,-1}
So every non-trivial fibre subspace is discrete and so (Z,T (1)) is

fibrewise ideal Ts- topological space over B .

Theorem: 4-5-4

In a fibrewise ideal topological space (X, T (1)) over B, X is fibrewise

ideal regular iff for every I-open set V containing x€ X , there exists

an l-open set U of X such that xe U c cI*(U) c V.
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Proof:

=>: let V be an I-open subset such that xe V. Then X\V is an I-closed
set not containing X. Therefore there exists disjoint 1-open sets U and
W such that xe Uand X\VcW. Now X\V < int (W) , implies X\int
(W)yc V. Again UnW =0 , implies U nint(W) =@ , which implies
that cl*(U) < X\int (W) c V. Therefore xeUc cl*(U) c V.
< let F be an I-closed set not containing X. By hypothesis, there exists
an l-open set U such that xeUccl (U) cX\F. If W = X\ cl*(U), then U
and W are disjoint I-open sets such that xeUand Fc W. m
Definition: 4-6-1

A fibrewise ideal topological space (X ,T°(l)) over B is said to be

a fibrewise ideal completely regular , if every non- trivial fibre subspace
iIs completely regular i-e for every I-closed set A c X, and any x €A,
there exist a continuous function f: X, — | suchthatf(x)=0,f(A)=1,
where | is the unit interval ,b € B .

Theorem :4-6-2
Every subspace of fibrewise ideal completely regular (X , T (1)) is

a fibrewise ideal completely regular.

Proof:
Let (X, T (1)) be a fibrewise ideal completely regular space over B,

and Y be a subset of X |, let x € Y and V be I-closed set in Y not
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containing x . Then V = AnY, where A is an I-closed set in X, Hence
x e YCS X, implies x € Xand A'is a closed set in X not containing x ,
since X is fibrewise ideal completely regular over B , then there is
continuous function f: X — I suchthatf(x)=0, f(A)=1.
Letg=1f/ytheng: Y— liscontinuous since VS A, implies g (V) =1,
g(x) = 0 . Therefore (Y, Ty(ly)) is a fibrewise ideal completely regular
overB. m

Example: 4-6-3

Let X =B =R and T, T, are the usual topology on R. If
P:(R,T) —> (R, T,) definedby p(xX)=x,andletl ={ Ac R: Ais
a finite subset of R }. Then ( R, T,) fibrewise topological space over

(R, T,) and (R, T'(I) is the usual topology , and hence (R, T3 (1)) is

fibrewise completely regular .

Theorem : 4-6-4
Ifb: (X, Ti) — (Y, T())is afibrewise continuous bijective and

open function and X is fibrewise completely regular over B, then Y is
a fibrewise ideal completely regular over B.
Proof :

Let y be any pointin Y, H is I-closed set such that y¢ H, since ¢ is

surjective continuous function then there exist x in X such that
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y=¢(x),and ¢ (H) = A is I-closed set in X, and x & ¢ *(H). Since
X is fibrewise completely regular, there is a continuous function
f: X —> 1 suchthat f (x) =0, f (A) =1, the composition function
fodt=q:Y I is continuous function such that q(y) =0, q(H) = 1.
Thus Y is a fibrewise ideal completely regular over B .m
Definition: 4-7-1

A fibrewise (X,T°(1)) space over B is called fibrewise ideal

Tychonoff space (or Ts ) if it is fibrewise ideal completely regular ,
T,- space over B.
Theorem: 4-7-2

If (X, T (1) is a fibrewise ideal Ts: space over B, then (X, T(1) is

a fibrewise ideal T;-space over B .
Proof:

Suppose F is I-closed set in X not containing x . If X is fibrewise
ideal Ts;, we can choose any continuous function with f (x) = 0 and
f(F)=1.ThenU = f *(c0,2) and V = f(—, ) are disjoint I-open
sets with x € U, FS V .Therefore X is fibrewise ideal regular .Since X

is fibrewise ideal T;. Then X is T;. m
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Theorem :4-7-3

If (X, T (D) isa fibrewise ideal topological spaces over B for all
a € A.Then X =[]qeq X, is afibrewise ideal Ts: space over B iff each
(Xo, T (Io)) is a fibrewise ideal T, space over B.
Proof:
= If X =[IaeaX, is fibrewise ideal Ts; then each X, is homeomorphic
to a subspace of X, so each X, is fibrewise ideal T space.
< : Conversely , suppose each X, is fibrewise ideal Ts: space over B ,
and that F is an I-closed set in X not containing a.There is a basic 1-open
set U such that ae U = N, m,'(U;) < X\F . For each i we can
bick a continuous function f,. : X, — [0,1] with fi. (ay,) = 0, and
fo; (X\U;) =1. Define f: X— [0,1] by f(x) = max { fi, o ) (x)}i; .
Then f is continuous and f (a) = max { fy, (aq,)}i'=1 =0
If x€ F, then for some i, Xai € Uai, and fy. (Xo) =1, s0 f (X) = 1.
Therefore f(F) =1 and Xis fibrewise ideal Ts. spaceover B.m
Definition: 4-8-1

A fibrewise ideal topological space (X,T (1)) over B is said to be

fibrewise ideal normal if every non- trivial fibrewise subspace is normal

space over B.
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Definition: 4-8-2
A fibrewise ideal topological space (X,T (1)) over B is said to be

a fibrewise ideal T4-space over B if it is fibrewise ideal normal space as
well as a fibrewise ideal T;-space over B.
Example: 4-8-3

Let X =B =R and T,, T, are the trivial topologies on R, and |

={¢}is anidealon X,P: (X, Ty — (B, T,) defined by p(x) = x then
X is fibrewise topological space over B, and A= cl(A) , then cl (A)

=AU A" = cl(A) for any set Ac R.So T = T. Hence every non-trivial

fibre subspace is a fibrewise ideal T,-space. So (R, T (1)) is a fibrewise

ideal T4-space over B.

Theorem: 4-8-4

Let (X,T'(1)) be a fibrewise ideal topological space over B, where I is

completely codense, and if for any disjoint I-closed sets A and B, there
exists disjoint I-open sets U and V such that A< U and BS V . Then for
any I-closed set A and I-open set U containing A, there exists an I-open
set U such that Ac US cl"(U) € V.
Proof:

Suppose A is I-closed and V is I-open set containing A. Since A and

X\V are disjoint I-closed sets , there exists disjoint I-open sets U and
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W such that AC U and X\VV €W, Since X\V is I-closed , and W is I-open
, X\V C int"(W). Then X\ int (W)SV. Again UnW = ¢ ,then U N int (W)
=¢ ,Uc X\int' (W). Then cI'(U) € X \ int (W) € V. Thus U is the
required I-open set with AC UC cl'(U) S V.m

Theorem: 4-8-5

Let (X, T°(1)) be a fibrewise ideal normal space over B, then every

closed fibrewise ideal subspace of (X, T (1)) is fibrewise ideal normal

space over B.

Proof:

Let (X, T (1)) be a fibrewise ideal normal space over B, and Y be

a closed subspace of X. To prove (Y, Ty(ly)) is fibrewise normal space

over B, with the relative topology. Let H and K be two I-closed disjoint
subsets of Y. Then we have H=YN A, K=YN B, where A and B are

I-closed sets in X . Now Y is I-closed and A and B are I-closed.

Hence YN A and YN B are disjoint I-closed subsets of X. Since (X,T (1))
is fibrewise normal corresponding to the disjoint I-closed subsets H and
K of X , there exists I-open subsets U and V such that Hc U, Kc V,
UnV =¢.NowHc U HCcY so Hc Un Y, Kc V, Kc Y, Hence
Kc VN Y. Also UnV = ¢. Therefore (YNU ) n (YNV)=¢ . Since U

and V are l-open sets in X, and hence YNU and YNV are |-open sets
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in Y . Now corresponds to the two I-closed sets H and K of Y , there

exists I-open set YNU and YNV in Y such that HcYnU, KcYnV, and
(YNU) n(YNV) = ¢. Hence (Y, Ty(ly)) is fibrewise normal space

over B .m
Theorem :4-8-6

Fibrewise normality invariant under continuous I-closed surjective
map.

Proof:

Let (X, T (1)) be an ideal fibrewise normal space over B ,

and Y is a fibrewise ideal topological space over B ,and let

f:(X, T (1)—(Y,T ")) be a fibrewise continuous , I-closed and surjective.

To prove (Y, T (3)) is fibrewise normal space over B. Let F, and F, be

disjoint closed sets in Y. Since f is continuous, f *(F,) and f (F,) are
I-closed in X. Since FiNF, = ¢.This implies that f *(F;) n f*(F,) =. Now
X is fibrewise ideal normal space and f *(F,) , f *}(F,) are disjoint I-closed
subsets in X.Hence there exists I-open sets U and V such that f *(F;) € U,
f*F,) € Vand UnV = ¢ . put W,;=Y \ f (X\U). Since f is I-closed map
and X\U is I-closed f (X\U) is I-closed set in Y. Hence W, is I-openin Y.
Also f*(F) € U, X\U € X\ f(Fy), so X\U c f(Y\Fy). So f H(Wy) =

f OV F(X\WU) = X\ FH(F(X\U) eX\(X\U) = U .
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Hence f (W) < U. Thus there exists I-open set W, containing F4, such
that f"*(W,) € U. Similarly there exists W, such that f (W,) € V.

f YWy n fH(W,) € Un V= ¢.Thus f (Win W,) = ¢ and so WiNW,=
¢. Thus there exists 1-open sets W, containing F; and W, containing F,
such that W;nW,=¢. Hence (Y, T (J)) is fibrewise ideal normal space
over B.m
Definition: 4-9-1

A fibrewise ideal topological space (X , T (1)) over B is said to be

fibrewise completely normal iff every non-trivial fibre subspace is
completely normal , that is for any two separated sets A and C of X, ,
where b € B, there exists disjoint I-open sets G and H in X, such
that Ac G, Cc H.

Definition: 4-9-2

A fibrewise ideal topological space (X,T (1)) over B is said to be

fibrewise ideal Ts-space over B if it is a fibrewise ideal completely
normal as well as fibrewise ideal T,-space over B.
Example: 4-9-3

Let X = R, T, is the discrete topology onR , and B = R, T, the

trivial topology on R and | = {A: A is finite subset of [0,1] } is an ideal

on X.
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A, ifA isnot finite subset of [0,1]

A(l,T)=
(LD {(Z) if A is finite subset of [0,1]

cl'(A)=AUA"=A thenT =T,

If P:(X,T)— (B, T,) defined by p(x) =x then P is continuous
and X, = p*(b) = {b} is a trivial fibrewise topological space over B.

So (R, T (1)) is a fibrewise ideal Ts- space over B.

Theorem: 4-9-4
) Every fibrewise ideal completely normal topological space over
B is fibrewise ideal normal topological space over B.
i)  Every fibrewise ideal Ts- topological space over B is fibrewise

ideal T,4- topological space over B.

Proof:

) Let A and C be two disjoint I-closed subsets of X, where beB.
Therefore A = cl (A) and C = cl (C) and An C = ¢. Which
implies clA)Nn C=AnC=¢,and Ancl(C)=AnC = ¢,

therefore A and C are separated sets .Since (X, T (1)) is

a fibrewise ideal completely normal space over B, there exists

I-open sets G and H such that Ac G and CcH, and Gn H = ¢,

Hence (X, T (1)) is fibrewise ideal normal space over B.
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i) Let (X, T(1)) be fibrewise ideal Ts- space over B, then
(X, T (1)) is fibrewise completely normal as well as fibrewise
T,- space over B. By (i), hence (X, T (1)) is fibrewise normal as

well as fibrewise T;- space over B. Therefore (X, T (1)) is

fibrewise ideal T,4- space over B.m

Theorem: 4-9-5
Every subspace of fibrewise ideal completely normal topological
space over B is fibrewise ideal completely normal topological space
over B.

Proof:

Let (X, T (1)) be a fibrewise ideal completely normal space over B and

Y be a subspace of X. To prove (Y, T (1)) is fibrewise ideal completely

normal with the relative topology. Let A and C be separated sets in Y.
Then we have clv(A) NC = ¢ , Ancly(C) = ¢. Now cly(A) = cl (A)NY,
cly(C) =cl(C)NnYY.

Then ¢= An cly(C) = An(cl (C)nY)=(Ancl (C)) nY=Ancl (C)
Since An cly(C) c Ac Y . Similarly, ¢ = cly(A) n C. Which implies that
A and C are separated sets in X, and since X is fibrewise ideal completely
normal topological space over B, there exists I-open sets G and H in X

suchthat Ac G,Cc H,and GhH=¢.
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Now Ac Gand Ac Y,so Ac G nY,letGNnY =U, then Ac U, and
CcY,soCcHnNY,letHNY =V, then C c V, where U,V I-open

setsinY,UNV =(GNY)N(HNY)=(GNnH)NY=¢.

Hence (Y, Ty(1)) is fibrewise ideal completely normal space over B.m
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Conclusion

Given a topological spaces (X, T), let (X, T*(l)) be a fibrewise ideal

topological space over B with a projection P: X — B and fiber subspaces
{ X, : be B } . We called a fiber subspace X is trivial if X, =@ or
Xp = X and we defined a fibrewise ideal topological space to be
Ti-space if every non-trivial fibre subspace is T;-space for i=0,1,2,3,4,5 ;
where T; is the separation axiom for all i . During our study we found

that :
1/ If (X , T) is a Ti-space, then (X, T (1)) is a fibrewise ideal
T; topological space over B for i=0,1,2.
2/ 1f (X, T'(1) is a Ti-space, then (X , T (1)) is a fibrewise ideal
T; topological space over B fori=0,1,2,3,4,5.

3/ (X, T (1) is a fibrewise ideal T; topological space over B without

being(X , T (1)) is a Ti-space fori=0,1,2,3,4,5.
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