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Abstract 

If (X  ) is a topological space, I is an  ideal on X  and         

 *(I) the topology finer  than   induced by the ideal I, 

then for any topological space B with a continuous 

map p:XB we call (X  *(I)) the fibrewise ideal 

topological space over B with fiber subspaces                  

{ Xb : b   B}; where Xb=P-1(b) for all b   B.  

The aim of this thesis is to define separation axioms in 

fibrewise ideal topological spaces and to study some 

of their basic properties. Also we discuss the main 

concepts, the important results in the topic including 

the relationship between these axioms and with the 

known separation axioms.  
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Introduction 

Fibrewise topological spaces theory, presented in the recent 20 years, as    

a new branch of mathematics developed on the basis of General Topolog, 

Algebraic Topology. It is associated with differential geometry, lie 

groups and dynamical systems theory. From the perspective of category 

theory, it is in the higher category of general topological spaces, so the 

discussion of new properties and characteristics of the variety of fibre 

topological spaces has more important significance [8]. 

Fibrewise topology can be thought of as the topology of continuous 

families of spaces or maps. 

A continuous map  :  E   B, now is called fibrewise topological space 

over B, and E(b) =  -1
(b) can be thought of as a continuous family          

of spaces,b   B. The parameter space B is called the base space,          

E(b) = -1
(b) is the fibre over b [13]. 

Ideals in topological spaces have been considered since 1930.  In 1990 

once again Jankovie and Hamlett, initiated the application of topological 

ideals in the generalization of most fundamental properties in general 

topology, they studied separation axioms using the concept of ideals in 

topological spaces [17]. 
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In 2018, fibrewise ideals was defined on fibrewise topology, and studied 

some of its properties, and considered fibrewise local function for                                   

a fibrewise space X over B using fibrewise ideal on X. 

The aim of this thesis is to define the separation axioms in fibrewise ideal 

topological spaces, and discuss some of their properties. 

This thesis consists of four chapters:  

         Chapter one is an introductory considered as a background for the 

material included in this thesis. It contains basic concepts, definitions, 

properties and some theorems of topological spaces.  

          Chapter two consists of two sections. Section one introduces the 

concepts of fibrewise topology. Also, it defines the fibrewise direct 

product of fibrewise topology. Section two studies separation axioms in 

fibrewise topological spaces, some examples are given, and interseted  

properties. 

           Chapter three consists of three sections. Section one studies the 

definition of fibrewise ideal and its properties. Section two defines the 

fibrewise local function for a fibrewise space X over B. Section three 

restricts the definition of a local function on each fibre Xb over b   B 

using  a fibrewise ideal, and studies its properties. 

            Chapter four defines separation axioms in fibrewise ideal 

topological spaces, introduces some examples and studies the properties 
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of fibrewise ideal spaces and the relationships between them using   

fibrewise maps. In addition, it proves several new results concering it. 
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This chapter is designed to give the preliminary concepts needed to the 

other chapters, and it is containing five sections. 

1-1 Topological spaces:-  

Definition: 1-1-1 [20]  

      Let                  

(the collection of all subsets of X) such that the following three axioms 

hold: 

1-             . 

2-                       {        }      

3-         , (i = 1,2,3,…...n), then  ⋂   
 
    

   

then    is a topology on X, the elements of   are called  open sets, and 

the pair (X,  ) is called a topological space. 

Examples: 1-1-2  

1- Let X be any non-empty set, 

  = {X,   } , then (X, )  is a topological space,   called the trivial 

topology on X, and (X, ) is called a trivial space. 

2-  Let X be any non-empty set,   = Ƥ(X) (the power set of X), then              

a topology on X called The discrete topology on X, and (X, ), is called      

a discrete space. 
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3- Let        {                then there is     such that         

             }. Then   is a topology on X, called the usual 

topology and ( ,  ) is called the usual space. 

4-             {                                 

              }               {               } 

then   is a topology on  n
 called the usual topology.  

Definition: 1- 1- 3 [20] 

      Let (X,  ) be a topological space, then F is said to be closed set in 

X iff it's complement is an open set. 

Example: 1-1-4  

     Let   {       }       {    { } { } {   }} , then  the closed sets 

in X are     {     } , {b, c,d},{c,d} 

Theorem: 1-1-5 [20] 

      Let(X, ) be a topological space. Then: 

i.   and X are closed sets 

ii. If        is closed, for    , then ⋂    {      } is closed. 

iii. If     X is closed (          ), then               is closed. 

Proof: 

i.    and X are closed, since their respective complements X and   are 

open. 

n

i
  

1
iA
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ii.  Let        be  closed, for      . This implies that          

for      . Also   ⋂{      }  ⋃{        }           

                  ⋃{         }           {         }   

             

iv. Let       X be closed (i = 1,2,3…n). This implies that           

Since                            (i = 1,2,3…n). Also , X -                        

(i = 1,2,3…n)    ,                               .Thus            is   closed.∎ 

Definition: 1-1-6 [20] 

       Let (X,    be a topological space and        . The subspace 

(relative) topology on A is    {       }          is called              

a subspace of (X,    

Example: 1-1-7 

1- Let (X,   be a topological space and                     , 

then    = Ƥ(Y) is the discrete topology on Y.  

2-  If X is infinite set, and   the finite complement space (the cofinite 

topology) i-e,   = {A: X \ A is finite set}     . Let Y be a finite 

subset of X, then    is the discrete topology on Y. 

 

 

  

n n

i 1
i  i

i
 

1
  (x ) A A

i  

n

i 1

(x )A
n

i
  

1
iA
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Theorem: 1- 1-8  

     Let (Y,   ) be a subspace of a topological space (Y,   ), then E is  

a closed set of Y iff there exists a closed set F of X, such that E = F  .  

proof: 

     Let E be a closed subset of Y, then Y\E is an open subset of Y. So 

there exists an open set A of X such that Y\ E =     .Thus E =     , 

that is there exists a closed set F =   , with  E =    .  Conversely,   let F 

be a closed subset of X, such that      , then     = Y\E .   

Therefore Y \ E is an open subset of Y. So E is a closed set in Y. 

1-2 Elementry Concepts: 

Definition: 1-2-1]20[,[16] 

     Let (X,    be a topological space and A   X. The closure of A is the 

set,    ⋂{                         } . 

Theorem: 1-2-2 [20[ 

     Let (      be a topological space and A  X. Then x     iff x   G     

implies       

Proof:  

     Let      and    G    . Assume that       . This implies that 

   X\G and X\G is closed. Hence    X\G, and X\G is a closed set 

containing A, a contradiction. Conversely, suppose that       

implies       . Assume that      .Then there is a closed subset F    
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of X such that A   F and    F. Hence x    X\F    and (X \ F)     . 

Contradiction. ∎ 

Theorem: 1-2-3 [20]  

     Let (X, )be a topological space and A, B are subsets of X. Then the 

following statements are true: 

i.     

ii. A    

iii. ( )    

iv.           ̅ 

Proof: 

i.   ⋂{                          }                                  

ii.         ⋂{                      }          . 

iii.   {                        }                     ̿           

( )  {     ̅                     }    

iv.           ̅        ̅                         ̅     ̅̅ ̅          ̅   ̅  , 

is a closed set, we have          . Also      is a closed  

                                     and       , 

                                          .∎ 
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Theorem: 1-2-4] 7  [   

        Let X be a non-empty set and, 

                                          

i)                      . 

ii)                                  

iii)                                                        

iv)          

Then      is called a kuratowski closure operator and there is a topology 

on X such that A is a closed set in X iff         = A. The family 

 *
= { [      ]        } is a topology on X, for which              

                       

Proof: 

     To show that  * is a topology on X 

a)                                                             X. 

Hence [      ] = (X)ᶜ       . 

Also, X   * 
since          and so [      ]          . 

b) Let  A,  B                                 

[      ]    [       ]  [              ]   [         ]      

c) Let                         

           [       ]                            

    [      ]                          
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  [        ]                    
 

    
        

                                              

                                         
 

    
        

                                    [        ]  

                                                    

                                                         

                              

                   (  )                          

                                     

                                                   . ∎ 

Definition: 1-2-5  [16 ] , [7]  

      Let A X. The interior (Int (A)) of A is the largest open set contained 

in A, that is Int (A) =  {                } 

Examples: 1-2-6  

1) In   with the usual topology if A= {0,1}, then Int (A) =   

2) In                               {               ⁄        }  

Then Int (A) =   

Definition: 1-2-7 [7  [  

     Let A   X. The boundry d(A) of A is      
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Examples: 1-2-8  

     Let A= ]0,1[     with the                          {   } 

Definition: 1-2-9 [18  [  

      A subset A of a space        is said to be compact if for every open 

cover {      } of A, there exist a finite subcover {   }   
  of A, such 

that      

1-3 Open, Closed Maps And Continuous Maps:  

Definition: 1-3-1 [7  [  

      A map f: X  Y is called open (resp.closed) if the image of each open 

(resp . closed) set in X is open (resp.closed) set in Y 

Examples: 1-3-2  

1) Let f:  2
   be the projection mapping defined as f (x1, x2)  = x1, then 

f is an open map. But not closed. 

2) If Y is a discrete  space  (all  subsets  are open)  then  every    function   

f : X Y is both open  and closed .  

Theorem: 1–3-3 [7]  

     f : X  Y is  a closed map iff     ̅̅̅̅̅      ̅             set A   X . 

Proof: 

     If f is a closed, then    ̅  is a closed, since f (A),      ̅   we abtain 

    ̅̅̅̅̅       ̅ ̅̅ ̅̅ ̅̅  =     ̅   , as reqnired. Conversely, if the condition holds 

and A is a closed, then f (A)          f ( ) = f (A), shows that 

1
αi

n

i

U
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      = f (A), so that f (A) is a closed.∎ 

Definition:  1-3-4 [16]  

     A function f : (X ,  1)  (Y ,  2) is said to be continuous at a point        

x   X iff for every open set V containing f (x) there is an open set   

containing x , such that f (U)  V. 

               

 

 

 

 

 

We say that f is continuous on a set A   X iff it is continuous  

at each point of A. 

Definition: 1-3-5 [7] 

      Let (X,  ) and (Y,  *
) be two spaces. A map f : X Y is called 

continuous if the inverse image of each open set in Y is open set in X . 

Example: 1-3-6 

      A constant map f : X  Y is always continuous . Since the inverse 

image of any open set U in Y, is either   or X, and both are open. 

Remark: 1-3-7 [7]  

1)  If f : X  Y and g : Y  Ƶ ,are continuous, so also is g o f :X Ƶ.  
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2) If f : X  Y continuous and A   X is taken with the subspace  

topology, then f /A : A  Y is continuous, where f /A is the restriction 

of f on A . 

3)  If f : X  Y is continuous and  (X) is taken with the subspace 

topology , then  f : X f (X) is continuous . 

Theorem: 1-3-8 [20]  

     If f : (X ,   )  (Y,   ) is a function , then the following statements 

are equivalent :  

1-  -1 
(C) is closed, where C is a closed in Y. 

2-  -1 
 (U)    1, for every U    2. 

3-   is continuous. 

4- f ( )        ̅̅ ̅̅ ̅̅ ̅, for every A   X. 

Proof: 

       We demonstrate the equivalence by establishing the cycle of 

implications (1)   (2)   (3)   (4)   (5). 

(1)   (2). Let U     ,then Y\U is a closed, which implies that  -1 
(Y\U) 

is a closed. Since  -1 
(Y\U) = f

 -1 
(Y)\  -1 U) = X \ f

--1
(U), we have that    

 -1
(U)     . 

(2)   (3). Let x   X and   (x)   U    . Then x    -1 
(U)     , and since 

  ( -1
(U))   U.   is continuous at x and thus continuous, since x was 

arbitrary. 



Chapter one : Preliminary Concepts 

15 
 

 (3)   (4). Let A   X. If y     (  ̅ ) and y  V     , then y =   (x) for 

some x    ̅. Since   is continuous, there exists an open set U     ,    

such that x   U and   (U)   V. Also, x     ̅implies that there is               

p   U ⋂ A. Thus    (p)    (U)  ⋂  (A)    V ⋂  (A).  Hence y       ̅̅ ̅̅ ̅̅    

and   ( ̅)       ̅̅ ̅̅ ̅̅ . 

(4)(1). Let C be a closed subset of Y. Then   (      ̅̅ ̅̅ ̅̅ ̅̅ ̅)           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      ̅ 

=  . This implies that (      ̅̅ ̅̅ ̅̅ ̅̅ ̅)    -1
 ( ) and so  -1

( ) is a closed. ∎ 
 

The previous theorem characterizes continuous functions as those having 

the property that the inverse images of open sets are open and the invers 

images of closed sets are closed. However, continuous function does not 

necessarily map open sets onto open set and closed sets onto closed sets, 

as the following example illustrates. 

Example :1-3-9  

       Let X be the set of real numbers and   { }  {     

                  }       a topology on X called ( the Co - countable  

topology), let Y = [0 ,1] and    {  ⋂[    ]     }. 

Then    is the  subspace topology : induced on Y by  .                                

   Let     : (R,    (y,   ) defined by   (x) = {
                  [   ]
                        

 

Then f is not continuous, since (0,1)      , but f 
-1

  [     ] = (0,1)    , 

as R \ (0,1) is uncountable. 
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Definition: 1-3-10 [20], [16] 

     A function h: (X,  )  (Y,  *
) is a homeomorphism (topological 

mapping) iff h is one-to-one, and onto, and h, h
-1 

are continuous. 

Definition: 1-3-11 [20] 

     A property P of a topological space is topological property iff P is 

invariant (preserved) under homeomorphisms. 

Remark: 1-3-12 [20] 

     The relation (X, ) is homeomorphic to (Y,    is an equivalence 

relation on the collection of all topological spaces. 

Definition: 1-3-13 

      A function  : (X,  )  (Y,   ) is said to be an embedding if it is       

one-to-one, open, and continuous. 

1-4 Product Spaces And Sequences In Spaces: 

Definition:1-4-1 

       Let (X,  ) be a topological space. A family      is called a basis 

for 𝜏 if each open set (that is, member of 𝜏) is the union of members of 

  . 

Definition: 1-4-2  

     Let (      ) be a topological space for all      . The topology 

defined on the set X = ∏         whose subbase the collection                  
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S = {                            } is called the product topology or 

the Tychonoff  topology on X .Where     ∏             defined by. 

           

  =    is   the projection map.  

The Tychonoff topology has a base the collection 

   {
 
 

   
   

                                           }. 

Theorem: 1-4-3  

      If ∏       is a product space, then each projection map is continuous 

and open. 

Proof: 

     Let  ∏       be a product space, where    ∏       be the           

   - the projection map. If U is an open set in   , then (  
   U) is              

a subbasic open set in ∏       for all    , so    is continuous, To 

show    is an open mapping. Let V is an open subset in ∏      .If z 

        . Then there exists x  V such that       = z i-e     = z. Let B 

be a basic open  set in  ∏       such that x  B   V, then       is open 

in    and z                .  So       is open.  

Definition: 1-4-4 [20] 

     Let (X, ) be a topological space,{  }    a sequence in X, and x   X. 

We shall say that {  }     converges to x and write xn  x iff       , 
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implies that there is n0     such that xn   G for all n   n0, where         

   {1,2,3,…}.  As a sequential limit, x is also   designated   by  

   
   

               
   

   

Example:  1-4-5 

      Let   be the set of real numbers and let   be the cofinite topology on 

 , let      for all n     . If x     and x   G     , then ( \G) is finite  

and xn   G, for all n   n0, for n0      . Thus xn  x for all x    . 

Theorem: 1-4-6 [20] 

     Let (X, ) be a topological space, A   X and x   X. If {xn }    is                 

a sequence in A, such that    x, then x    ̅ . 

Proof: 

     Let          be a sequence and converging to x, and x   G   . By 

Definition (1-4-4) there is n0  
 
N such that xn   G, for all n   n0. Since        

xn   A, for all n   , we have G   A          x    ̅ .∎ 

1-5 Separation Axioms: 

Definition: 1-5-1 [20] 

      (X, ) is a T0- space iff x, y   X with x   y implies that  there  exists    

U     such that either x   U and y   X\U, or y   U and x   X\U 
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Example/ 1-5-2 

      Let X = {a,b ,c} and    {    { } { } {   }}       (X ,   ) is             

a    -space . Let    {   }, then (X,     is not a   -space. 

Definition: 1-5-3 [20] 

     (X,  ) is a   -space iff x, y             implies that there exists U, 

V     , with x   U, y  X\U and y   V, x   X\V. 

 

Theorem: 1-5-4 [20] 

      (X,   ) is a   -space iff { } ̅̅ ̅̅̅= {x}, for each x   X. 
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Proof: 

     Let (X,  ) be a   - space and x   X.  If y   X\ {x},  then there exists    

V   such that y V and x X\V. Hence y { }̅̅ ̅̅ and { } ̅̅ ̅̅̅={x}. Conversely, 

suppose that { }̅̅ ̅̅  = {x}, for each x  X. Let y, z   X with  y   z.Then  

{ } ̅̅ ̅̅ ̅= {y} implies that there exists V     such that z   V, and y   X\V. 

Also, { }̅̅ ̅̅  { } implies that there exists U     such that y   U and                    

z            (X,  )  is a T1- space. ∎ 

Definition: 1-5-5 [20] [16] 

      (X,  ) is a T2 - space iff x, y   X with x   y, implies that there exists 

U, V    with x    , y     , and U   V =   . T2- spaces are also called 

Hausdorff spaces. 

        

  



Chapter one : Preliminary Concepts 

21 
 

Example: 1-5-6 

      Let X be any non-empty set,   is the discrete topology on X, then         

(X,  ) is a T2-space “Hausdorff space”. 

     Clearly from the definitions that every    -space is a   -space and 

every    -space is a   -space. The following theoems holds with every   

Ti for  i = 0 ,1 ,2 . 

Theorem: 1-5-7 [20] 

        If (X, ) is a Ti-space, then every subspace of (X,  ) is also                  

a    - space, for i  = 0,1,2. 

Proof: 

     We prove the theorem of the case i = 2, the other cases will be similar. 

Let         ,and x, y    with x    since x,  y   X,  there exists         

U, V     such that x   U, y  V, and U      . Thus x   A   U,               

y  A   V, and  we  have (A   U)   (A   V)    ,  since U   V=  .  

Hence (A,   ) is a   -space. ∎ 

Theorem:  1-5-8 [20] 

      If X= ∏             X  is a   -space  iff        is  a   -space,  for  all 

i = 0,1,2. 
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Proof:  

      We will prove the theorem for i = 2, the other cases will be similar. 

⟹ :  If  =  X = ∏       is a   -space , then since for any    ,    can 

be embedded as a subspace of X = ∏       and since every subspace of  

a   -space is a   -space , so    is a   -space for all     . 

⟸: Suppose     is a   -space for all    , let x, y   ∏       , x y, 

there exists      such that       . Since X is a   -space , there are 

disjoint open sets U , V in    containing    ,    respectively, and hence 

∏ 
        ∏ 

       are open sets in ∏       containing x and y 

respectively . So ∏        is   a   -space. ∎ 

Definition: 1-5-9 [7] 

     (X,    is a regular space if for each closed subset A of X, and x is           

a point of X not in A, then there exist two disjoint open sets one 

containing A and the other containing x. 

Example: 1-5-10 

     Let X = {a,b,c} and    {    { } {   }}, then (X ,   is a regular 

space. 

Theorem :1-5-11 [20] 

      (X, ) is a regular space iff       implies that there exist V      

such that x       ̅    . 
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Proof: 

    ⟹:  Let        be a regular and         ,then X\U is closed and 

there exists           with x    , and          and          . 

Thus                . Also,          since       is  a closed.  

Let V=    . Now assume that x       implies there exists V    such 

that x      ̅    . Let       and F   X\{x}, with F closed. Then             

x         . Hence there exists V    such that         ̅      . 

 This implies that F      ̅   . And (X\  ̅)      . Thus (X ,  ) is       

a regular space.∎ 

Theorem: 1-5-12 [7] 

     Every subspace of a regular space is a regular space. 

Proof: 

  Given     X, let B     be closed in  , and       .Then B = Y   A, 

where A is a closed in X, and since A does not contain    , there are 

disjoint open sets U, V in X , such that      U , A   V. 

Then U Y and V Y are the required disjoint open sets of  Y 

respectively containing    and B respectively.  ∎ 

Theorem: 1-5-13 [7] 

     If  X = ∏      , then X is  a regular  space iff    is a regular for all 

   . 
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Proof: 

    ⟹:    If X = ∏
       is regular, then implies that each X  is regular      

( A subspace of regular space is regular),since each X  is homeomorphic 

to a subspace of X .  

⟸: Conversely, suppose each X  is regular and that U = ∏     U  is               

a basic open set containing x. For each    we can pick an open set V   in 

X  such that  x     V i    ̅   U   . Let V = ∏     V    then V is             

an open set in ∏     X   and x   V    ̅    U . Therefore   ∏     X   is 

regular .∎   

Definition: 1-5-14 [20] 

     (X,  ) is called a   -space iff (X,  ) is a regular and   -space. 

         

Theorem: 1-5-15  

     Every subspace of a   -space is a   -space. 
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Theorem: 1-5-16  

      X = ∏       is a   -space iff    is a   -space for all     . 

Definition: 1-5-17 [20] 

     (X, ) is a completely regular iff x    and A    { } , with A is 

closed, implies the existence of a continuous function f : XI  with              

f  (x) = 0 and f (A) = {1}, I is  the unit interval  i-e   I = [0,1] 

Definition: 1-5-18 [20]  

     (X,  ) is a Tychonoff ( 
 

 

 

) space iff (X,  ) is completelty regular, 

       -space. 

Theorem: 1-5-19 [7] 

     Every subspace of completely regular space is completely regular. 

Proof:  

     Let Y   X be a subspace , and  let x   Y,  A is a closed in Y. since      

A = Y   F, where F is closed in X , x   A , then  x   Y   F  , implies       

x   F ,since X is completely regular there is a continuous function                 

f : X  I , such that  f (x) = 0 , f (F) = 1 .Let g = f /Y then  g : YI   is 

continuous and since A   F , then g(x) = 0 , g(A) = 1 , thus Y is                       

a completely regular space .∎  

Theorem: 1-5-20 

      Every subspace of a Tychonoff space is a Tychonoff ( 
 

 

 

 ) space.   
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Theorem: 1-5-21     

      If X = ∏       , then  X  is  a completely   regular   iff       is                  

a completely regular for all      . 

Proof: 

     ⟹:  Suppose X =  ∏       is completely regular space, since each 

X  can be embedded as a subspace of X = ∏      .  

So X  is a completely regular space for all     . 

⟸:  Suppose     is a completely regular for all      . Let  A be                    

a closed set in ∏       , x   A there  exist a basic nbhd  ⋂     
   

         

containing  x and [    
     

        ]               
          for all  

k , there  exist a continuous function ,         
   such that    (   

) = 0, 

    (   
    ) = 1. 

But  then    o    
 is continuous  function,   o    

= ∏             for  

all k . 

Let f : ∏           defined  by. f (y) = max {        
    }

   

 
 .Then  f 

is continuous, f ( )= 0, f (A) = 1 .So ∏         is completely regular .∎ 

Theorem: 1-5-22    

     X =  ∏       is a Tychonoff  space iff      is a Tychonoff space for 

all     . 
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Definition: 1-5- 23 [20] 

     (X,  ) is a normal space iff for every pair          of disjoint closed  

subsets of X, there exists           with       ,         ,and 

         . 

Example: 1-5-24   

       Let X = {       } and    = {  , {u},{u , v} ,{u , v , w } , X}  . 

Note that closed sets are  , { }  {   } {     }  , every non-empty 

closed set contains   , so (X,  ) is a normal space. 

Theorem: 1-5-25 [7] 

      A topological space X is normal iff for any closed set F and open set 

U containing F, there exists an open set V such that F  V   ̅   U. 

Proof: 

      ⟹:  Suppose X is normal and the closed set F is contained in the 

open set U. Then k = X\U is a closed set which is disjoint from F. By 

normality, there exist two disjoint open sets G and H such that F   G 

and k  H. Since G   X\H we have   ̅   (      ̅̅ ̅̅ ̅̅ ̅) = (X\H)   X\ K= U. 

Thus G is the desired set.  

⟸: Now suppose the condition holds, and let    and    be disjoint 

closed subsets of X. Then    is contained in the open set X\   and by 

hypothesis, there exists an open set V such that       V   ̅   X\  . 
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Clearly, V and X\ ̅ are the two desired disjoint open sets containing    

and    , respectively. ∎  

Definition:  1-5-26 [20] 

     (X, ) is a    -space iff (X, ) is a normal   -space. 

 

                                                   

Theorem: 1-5-27       

      If X is a non-empty set,   ,    are topologies on X, with        . 

Then: 

1) If (X,  ) is a   -space, then (X,  ) is a   -space for i = 0,1,2. 

2) If (X,  ) is a regular space, then (X,  ) need not to be a regular 

space. 

3)  If (X,  ) is a normal space, then (X,  ) need not to be a normal 

space. 
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Proof:   

1) We prove the theorem for the case i = 2, the other cases are 

similar. Let (X,  ) be a   -space x  y in X, there exists two 

disjoint open sets U, V in    with x U, y V, since        .     

So every open set in    is an open set in   . Therefore for every 

pair of distinct points x, y in X, there exists two disjoint open sets 

U, V in    , such that x   U, and y   V. Thus (X,  ) is                  

a   -space. 

2)      For example, let X={     },    ={    { } {   }},                 

   {    { } { } {   } {   }} . Note that        but (X ,   ) 

is  a regular space , and    is not a regular space , since closed 

sets in (X ,  ) are  ,X,{b},{c},{b,c}{a,c}, there is no open set 

contain {b,c} , but not a .  

3)  For example , let X={     },and   ={    } ,    ={ , X, {a,b} 

,{b}, {b,c}} , note that (X ,  ) is a normal space but (X ,  ) is 

not a normal space  ∎ 

Definition:  1-5-28 [20] 

     Let (X, ) be a topological space and A, B be subsets of X, A and B 

are separated iff A   ̅    ̅      . 
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Definition: 1-5-29 [20] 

     (X, ) is completely normal iff for every pair A, B of separated subsets 

of X, there are disjoint open sets U and V with A   U, and B  V. 

Definition: 1-5-30 [20] 

     (X, ) is a   -space iff (X, ) is a completely normal   -space. 

     

                        

Theorem: 1-5-31 [20] 

     (X, ) is completely normal iff it is hereditarily normal i-e, each 

subspace of (X, ) is a normal. 

Proof: 

      ⟹:  Let (X, ) be a completely normal space and (     ) be any 

subspace of (X, ). If    and    are disjoint subsets of A  that are closed    

in A , then there are closed subsets    and    of  X such that    = A      
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and     = A     , thus  ̅       and  ̅       . This implies that  ̅      =     

    ̅  =   , and    ,    are separated in X. the complete normality of       

(X , ) implies that there exist   ,       such that        ,        

and          . Finaly,      A         and      A          

with (A      (A        . This estabishes the normality of (A,  ). 

⟸: Conversely, let each subspace of (X, ) be normal, and let    and    

be separated in X. If   A = X\ [( ̅  –   )  ( ̅  –   )] has the relative 

topology    , then   and    are closed in A .The normality of (     )  

implies there exist A     , A          such that          ,         

           and                      

  This   implies that             
̅̅ ̅            

̅̅ ̅         

Let             
̅̅ ̅                     

̅̅ ̅     . 

Clearly         and         with           . 

This establishes the complete normality of (X,  ). ∎ 
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      The purpose of this chapter is to introduce the concept of fibrewise 

topological spaces, to study consider separation axioms in fibrewise 

topological spaces, fibrewise T0-spaces, fibrewise T1-spaces, fibrewise  

T2- (Hausdorff)  spaces, fibrewise regular spaces, fibrewise completely  

regular, fibrewise normal and fibrewise completely normal spaces,  and  

to  give several results which are needed in the chapter of separation 

axioms in fibrewise ideal topological spaces. 

2-1 Definitions and examples; 

Definition :2-1-1 [2],[ 15] 

     Let B be any non-empty set. Then a fibrewise set over B consists of        

a set X together with function p: X  B. called the projection, and B is 

called the base set. For each point b of B, the fibres over b is the subset     

Xb = p
-1

(b)  of  X. Fibres may be empty since we do not require p to be 

surjective , also for each  subset  B
*
 of B,  we regard XB*= p

-1
(B

*
) 

=⋃      b  is  a  fibrewise  set over  B
*
  with  the projection determined   

by p . 

Remark: 2-1-2 [2] 

     Let X be a fibrewise set over B, with projection p. Then Y is                         

a fibrewise set over B, with projection p o q for each set Y and function         

q:  Y    X. 
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Definition: 2-1-3 [2],[15] 

      If X and Y are fibrewise sets over B, with projections p and q 

respectively, a function   Ψ:  X    Y is said to be fibrewise function if q 

Ψ = p, in other words if Ψ (Xb)   Yb for each b   B. 

Definition: 2-1-4 [2],[1] 

      Let B be a topological space, then a fibrewise topology on       

a fibrewise set X over B is any topology on X for which the 

projection p is continuous. 

Example: 2-1-5     

     Let X = { x ,y , z } , B = { a , b , c} and P : X    B   be a map  defined 

by  P(x)  =  a ,  P (y) = b ,  and   P(z)  =  c , let   1 = {X, , {x}, {y}, {x, y}}  

be a topology on X ,  and   2 =  {B, , {a}, {b}, {a, b}} be a topology on B, 

then P : X B is a continuous function . Therefore (X,  )  is fibrewise 

topological space over B. 

Example: 2-1-6 

     If X =  with   the usual topology and B =   with the usual topology , 

P : X  B  defined by  P(x)  = | |  , then (X , )  is fibrewise topological  

space  over  B , and for any  b     ; 

Xb =  P
-1

(b) =      { 
{     }             
                         
{ }                 
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Remark: 2-1-7 [15] 

     The coarsest such topology is the topology induced by p, in which the 

open sets of X are precisely the inverse images of the open sets of B; this 

is called the fibrewise indiscrete topology. 

Example: 2-1-8 

     If X is any discrete topological space and B is any topological 

space,and P : X    B  is any map , then X is a fibrewise topological 

space over B. 

Definition: 2-1-9 

Let (X ,   ) be a fibrewise topological space over B for all      , then 

the product X = ∏       defines fibrewise spaces over B and equipped 

with the family of fibrewise projection  

P o𝜋 : ∏         B. Where   𝜋 :  ∏        X  is the   - the 

projection map and   P :  X   B is the projection of X .  

Theorem: 2- 1-10   

     If (X,  1) is a fibrewise topological space over B, and  2 is a topology 

on X such that   1   2. Then (X,  2) is a fibrewise topological space 

over B. 
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Proof: 

     Since every open set in   1 is in  2, and since (X,  1) is fibrewise 

topological space over B, then the projection p: (X,  1)  B is 

continuous. So p: (X,  2)  B is continuous also. Therefore (X,   2) is 

fibrewise topological space over B. ∎ 

Definition: 2-1-11 [15] 

     A fibrewise function Ψ: X  Y, where X and Y are fibrewise 

topological spaces over B is called: 

a)  Continuous if for each point x   Xb   where b   B, the inverse   

image  of each open set containing Ψ(x)  is an open  set of X 

containing   x. 

b)  Open if for each point x   Xb where b   B, the direct image of 

each open set containing   x is an open set containing Ψ (x). 

Propositions: 2- 1-12 [1] 

     Let   φ:  X    Y     be a fibrewise function, where Y is fibrewise 

topological space over B, and X is a fibrewise set has the induced 

fibrewise topology. Then for each fibrewise topological space Z,              

a fibrewise function  ψ  : Z   X  is continuous  iff the composition           

φ  o  ψ : Z   Y  is continuous . 
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Proof:      

     ⟹: Suppose that ψ is continuous.  Let z    Zb, where b  B, and V 

open set containing (φ o ψ)(z) =  yb  in Y. Since φ  is  continuous,  φ
-1 
(V)  is 

an open set containing  ψ (z ) = x  Xb   in  X . Since ψ  is   continuous ,   

then   ψ
-1 
(φ

-1 
(V

 
) )  is an open set containing  z   Zb in Z , and  ψ

-1 
(φ

-1 
(V

 
) ) 

= (φ o ψ)
-1

(V) is an open set containing  z   Zb in Z . 

⟸:  Suppose that φ o ψ is continuous. Let z    Zb, where b  B and U 

open set containing ψ(z) = x  Xb in X. Since φ is   fibrewise function 

implies that φ is continuous so φ is   open, φ (U) is an open set 

containing   φ ( x)  = φ (ψ(z) ) = y Yb  in Y .  

Since φ o ψ is continuous. Then (φoψ)
-1 

(φ(U)) = ψ
-1

 (U) is an open set 

containing   z   Zb   in Z. ∎ 

Definition: 2-1-13  

      The fibrewise topological space X over B is called fibrewise closed 

(resp.open) if the projection p is closed (resp. open) function. 

Propositions: 2-1-14  

     Let   :  X Y be an open fibrewise function, where X and   Y are 

fibrewise topological spaces over B. If Y is fibrewise open, then X is 

fibrewise open. 
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Proof: 

      Suppose that    : XY is fibrewise open function and Y is fibrewise 

open, the projection pY: Y B is open. To show that X   is fibrewise 

open, we need to show the projection   pX: X   B is open. Now if  V is 

open subset of Xb , where  b    B , since     is open , then      is open 

subset of Yb , since   pY   is open ,  then   pY (    ) is open in  B , but pY 

(     ) = ( pYo  )(V) =  pX(V)  is open in B .Thus pX is open and X is 

fibrewise open. ∎ 

Propositions: 2- 1-15 

      Let φ: X Y be continuous fibrewise surjection, where X and Y are 

fibrewise topological spaces over B. If X is fibrewise closed then Y is 

fibrewise closed. 

Proof: 

     Suppose that φ:  X Y is continuous fibrewise surjection and X is 

fibrewise closed, the projection   pX : X  B  is  closed .  To show that Y 

is fibrewise closed, we need to show the projection pY:YB   is closed . 

Let G be a closed subset of Yb, where b  B.  Since φ is continuous   

fibrewise , then  φ
-1

(G)  is  closed  subset  of  Xb .  Since pX is closed, 

then pX(φ
-1

(G)) = (pXo φ
-1

)(G) = pY(G)  is closed in B. Thus pY is closed 

and Y is fibrewise closed. ∎   
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Theorem:  2-1-16 

     If (X  ,  )   is a  fibrewise  topological  spaces over B , for all       . 

P  :  X     B   is a projection  map  for  all         . 

Then for any       ,     X    is a fibrewise topological space over B 

with projection   P  o 𝜋 .     

Proof:                                            

     That is clear, since the projection map P  o 𝜋    is continuous for all  

      .∎ 

Corollary: 2- 1-17 

      The product of fibrewise topological spaces over a topological space 

B is a fibrewise topological space over B. 

 2-2 Separation axioms in fibrewise topological spaces: 

      Before we introduce the definition of fibrewise separation axioms 

 we introduce the following definitions. 

Definition: 2-2-1 

      Let (X, )  be a fibrewise topological space over B, Xb   X, b    B  is 

called trivial fibre subspace if   Xb = p
-1

(b) =     or  one point set. 

 

Xb is the fibre space corresponding to b. 
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Example: 2-2-2 

     If P: ( ,  )    ( ,  )  is defined by P(x) = x
2 

  and    is the usual 

topology on  . 

Then  Xb  =  p
-1

(b)  =  {
{ √  √ }               

{ }                        
                               

 

Then     and  { }  are  trivial fibre subspace over B. 

Theorem: 2-2-3  

      If (X, )  is a fibrewise space over B. and p: X  B. the projection 

map is injective. Then every fibre subspace is trivial   i- e   Xb is empty or 

one- point set. 

Definition: 2-2-4 

     A fibrewise topological space (X,  )  over B is said to be fibrewise  

T0-space if every non-trivial fibre subspace Xb is T0 -space, where b   B. 

that is x1, x2     Xb where b   B and x1   x2, either there exists an open 

set in Xb containing x1 and does not contain x2 in X or vice versa. 
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Example: 2-2-5 

     Let X = B =   with the usual topology  and let i be the identity 

projection function   the ( ,  ) is fibrewise T0- space over ( ,  ) . 

Here in this example Xb = p
-1

{b} ={b} is a trivial subspace for all b     . 

Theorem:  2-2-6 

     If (X,) is a T0-space and is fibrewise space over BThen (X,)  is  

fibrewise T0-space over B. 

Proof: 

     For any b    B, Xb is fibre subspace of X, and since every subspace of 

a T0-space is a T0-space, so Xb is a T0-space. ∎ 

Definition: 2-2-7  

     A fibrewise topological  space ( X ,) over B is said to be a fibrewise 

T1- space  if every non - trivial  fibre  subspace Xb  is  T1- space .That is  

if  x1 , x2   Xb   , where b   B  and  x1   x2 , there exist  open  sets U1 , U2 

in Xb , such that    x1    U1 , x2    U1  and   x2    U2  ,  x1    U2    . 
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Example: 2-2-8 

     Let X = B = {a, b}.  Let 1 = {X, , {a}, {b}(the discrete topology  

on X),  2 = {X,  }( the trivial topology on B). 

p: (X,1)    (B, 2) defined by   p(x) = x, then p is continuous, and for 

any z   B, Xz = p
-1

(z) = {z} is a trivial fibre subspace. So (X, ) is          

a fibrewise T1-space over B. 

Theorem: 2-2-9 

    If (X,)  is  a T1-space and is a fibrewise space over B. Then (X,)  is  

a fibrewise T1-space over B. 

Proof: 

     For any   b    B , Xb is a fibre subspace of X, and since every subspace 

of a T1- space is a T1-space. So Xb   is a T1-space. ∎ 
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Theorem:  2-2-10 

     Let (X,  ) be a fibrewise topological space over B. Then (X, )  is     

a fibrewise T1- space iff  { }̅̅ ̅̅  ={ }  for every x    Xb . 

Proof: 

     ⟹: Let (X,) be a fibrewise T1- space over B and x   Xb if y    , y    

Xb \{ } , then there exists an open set V   , such that y   V, and   x   V. 

Hence y   { }̅̅ ̅̅   and  { }̅̅ ̅̅ = { }  . 

⟸:  Conversely, suppose that { }̅̅ ̅̅  = { } for each x   Xb. Let y, z     Xb 

with y   z. Then  { }̅̅ ̅̅  { }implies  that  there  exists  V     such  that  

z    V  and y   V . Also, { }̅̅ ̅̅  = { }   implies that there exists   U      

such that y   U and z   U. Hence (X, ) is a fibrewise T1- space   over B 

by (definition 2-2-8). ∎ 

Definition: 2-2-11 

       A fibrewise topological space X over B is called a fibrewise            

T2(Hausdorff)-space if every non-trivial fibre subspace is T2 (Hausdorff). 

That is if x1, x2     Xb, where b   B and x1   x2, there exist disjoint   open 

sets  U1 , U2  containing   x1 , x2  in  Xb. 
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Example / 2-2-12 

      If X =  ,  the  cofinite   topology and let B =   with the cofinite   

topology and P : X  B is defined  by  P(x) = x
2 
 then  p  is  continuous . 

So ( X ,)  is fibrewise  topological  space over  B ,  and  for  any  b   B 

Xb  =  { 
{ √  √ }              

 { }                            
                                

 

If    b > 0, Xb  = { √  √ }  is  non-trivial  subspace  and the  subspace  is  

discrete subspace of  X , then (X ,)  is  a fibrewise  T2-space  , but not  

T2-space . 

Theorem: 2-2-13 

     If  ( X,) is  a T2-space  and  is a fibrewise  space over B .Then (X,)  

is  a fibrewise T2- space over B . 
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Proof: 

      For any b    B , Xb  is  a fibre  subspace of X , and  since every  

subspace  of  a T2- space is a T2- space , so Xb is a T2- space . ∎ 

Proposition: 2-2-14 

 Let    : X  X
* 

 be an embedding fibrewise  function , where  X  and  

X
* 
are fibrewise topological spaces over B .If  X

* 
is fibrewise Hausdorff . 

So is X. 

Proof: 

    Let x1, x2    Xb, where b   B, and x1  x2.Then   (x1),   (x2)     X
*
b   

are distincet. Since X
* 

is fibrewise Hausdorff, there exist disjoint open 

sets V1, V2 containing   (x1) ,   (x2) in X
*
b, there inverse images  -1

(V1) , 

 -1
(V2 )  are disjoint  open  sets  containing  x1 , x2  in Xb  ,  and  so  X  is 

fibrewise  Hausdorff  space . ∎ 

Theorem: 2-2-15  

     If X   is  a fibrewise T2- topological  spaces over B ,with projection P   

for all      ,then for all     ,          is a fibrewise T2- topological  

space  over  B  with  projection  P  o 𝜋 . 

Proof: 

     Suppose X  is a fibrewise T2- space over B, for all       and with 

projection  P  : X  B  then for any        , P  o 𝜋  :       X     B   is 

continuous . So  ∏    X   is  a fibrewise  topological  space over B  with  
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projection P  o 𝜋  . Now for any b   B, Xb = ( P  o 𝜋 )
-1 

(b) = 𝜋-1
  (p

-1
 

 
(b)) 

= { (x )     : x    X  ,  x     p
-1

(b) }is  a subspace of  ∏    X   and since  

the product of T2-spaces  is a T2-space, and every  subspace  of  T2- space  

is  a T2-space , so it follows that every fibre subspace  is  a T2- space , and 

hence  ∏    X   is fibrewise T2- space over  B . ∎ 

   We now proceed to consider the fibrewise versions of higher Separation 

Axioms starting with regularity. 

 Definition: 2-2-16   

     A fibrewise topological space X over B is called a fibrewise regular 

space if each non-trivial  fibre  subspace  is  regular, that is for each point   

x   Xb , where b   B and for each open set Vof x in Xb , there  exists  

neighborhood  W  of x in  Xb such  that x   W   ̅  Xb   V. 

Remark: 2-2-17 

    If X is fibrewise  regular  space over  B, then X
*
B  is  fibrewise regular  

space  over B
* 
 for each subspace  B

*
 of  B . 

Theorem: 2-2-18 

     If (X,)  is a regular space  and a fibrewise  topological  space over B, 

Then (X ,) is  a fibrewise  regular space over B . 
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Proof:  

     Since every subspace of regular space is regular, so it follows that 

every fibre subspace is regular and hence (X,) is fibrewise regular 

space. ∎ 

Proposition: 2-2-19 

     Let  φ : X  X
* 

 be  a fibrewise  embedding function , where  X  and  

X
* 

are a fibrewise topological  spaces over  B . If X
* 

is fibrewise regular, 

then so is X. 

Proof: 

     Let x   Xb where b   B and let V be an open set containing x in Xb. 

Then V =   -1
 (V

*
) where V

* 
is an open set containing   x

* 
=   (x) in  X

*
b 

since X
*  

is  fibrewise  regular there  exist an open  set U
*
 containing  x

* 
 

in  X
*
b , such that

 
 X

*
b   cl(U

*
)   V

*
. Then U =  -1

(U
*
) is an open set 

containing
 
x in Xb such tha Xb   cl(U)   V, and so X is fibrewise  

regular.∎ 

     The class of  fibrewise  regular  spaces  is fibrewise  multiplicative   in 

the  following  sense . 

Proposition: 2-2-20 

    If  X   is a fibrewise regular topological  space over B , with  projection 

P  for     . Then X= ∏       X   is fibrewise regular topological  space  

over  B , with  projection     o      for any      . 
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Proof:   

     Suppose X  is a fibrewise regular space over B, for all      and with 

projection P  : X   B . Then for any       , P  o 𝜋   =       X   B   

is continuous , so      X   is  a fibrewise  topological  space over B , 

with  projection  P  o 𝜋  . Since  for any  b   B , Xb = ( P  o 𝜋 )
-1 

(b) = 

   𝜋 
-1

(p
-1

 (b)) = {    )     : x    X  ,  x     p
-1

(b) } is  a subspace of     

∏    X   and since the product  of regular spaces  is  a regular space , and 

every subspace of regular is  a regular, then  ∏    X   is  a fibrewise  

regular  space  over  B . ∎ 

Proposition: 2-2-21  

     Let φ :X Y be an open, closed and continuous fibrewise surjection, 

where X and Yare fibrewise topological spaces over B. If X is fibrewise 

regular, then so is Y. 

proof: 

     Let   y    Yb, where b   B and let V be an open set containing   y in Yb 

pick x   -1
(y

 
). Then U =  -1

(V
 
) is  an open set containing x , Since X is 

fibrewise  regular , there exists  an open set W  of  b  and an open set U
* 

containing  x in Xb  such that  Xb   cl(U
*
)    U .Then Yb   ( cl(U

*
)  

    (U) = V. Since    is closed, then   (cl(U
*
)) =  cl( (U

*
))  and since 

   is  open , then    (U
*
)  is an open set containing y. Thus Yb is               

a fibrewise  regular. ∎ 
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Definition: 2-2-22 

    A fibrewise topological space (X,) over B is called fibrewise          

T3-space  iff (X , )  is fibrewise  regular ,T1-space . 

   

Example: 2-2-23 

      Let X = [ -2𝜋 , 2 𝜋]  with  the cofinite topology  and  B = [ -1 , 1 ]  

with  the trivial  topology , let  p (x)  =       be  the  projection  map for  

any  b   [-1 ,1] ,   Xb  =  { x   X :        =  b }  is  finite  subset  of  X .  So 

Xb  is     a discrete space for all  b    B , and therefore Xb  is fibrewise    

T3-space , that is X is a fibrewise T3-space over B . However (X,) is not 

T3-space.  

Theorem: 2-2-24 

     If (X, ) is a T3-space and is  fibrewise  space  over B .Then (X , ) is  

a fibrewise T3-space over B . 
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Proof: 

     Since every subspace of a T3-space is a T3-space, so it follows that 

every fibre subspace is T3, and hence (X,) is fibrewise T3- space.∎ 

Theorem: 2-2-25 

     Let (X, )be  a fibrewise T3-space  over B,  then  (X, )  is fibrewise  

T2- space . 

Proof: 

     Let x1, x2 be distinct points of Xb, where  b    B , since X is fibrewise  

T3-space, then there is open set U containing x1 or x2 in Xb , let U 

containing  x1 but not x2 , since X is T1-space , so F = Xb\U is closed set 

containing x2 but not x1 in Xb . Using definition of T3-space, we get two 

disjoint open sets G, H such that x1    G1, x2   H in Xb, thus ( X,  ) is    

T2- space . ∎ 

Definition: 2-2-26 

    A fibrewise topological space (X , ) is said to be fibrewise completely 

regular if  every non-trivial fibre subspace is completely regular , that is 

for each point  x   Xb  , where b   B ,  and  for each closed  set  A   in  Xb    

x   A ,there exists a continuous  function fb : Xb  I  such that  fb(x) = 0 , 

fb(A) =1  . 
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Remark: 2-2-27  

1)  If X is fibrewise completely regular space over B, then X
*
B is 

fibrewise completely regular space over B
*
, for each subspace B

*
 of B. 

2) Subspaces of fibrewise completely regular space are fibrewise 

completely regular spaces. 

Theorem: 2-2-28 

     If (X, )  is a completely regular and (X,) is fibrewise space over B, 

then (X, ) is fibrewise  completely regular space over B . 

Proof: 

     Since every subspace of completely regular space is completely 

regular,  so  it  follows  that every fibre subspace is completely regular , 

and thus  (X ,) is fibrewise  completely  regular  space over  B . ∎ 

Proposition: 2-2-29  

     Let φ : XX
*
  be a fibrewise embedding,where X and X

*
are fibrewise 

topological  spaces over  B . If   X
* 
 is  fibrewise completely regular , then  

so is  X . 

Proof: 

     The proof is similar to the proof  of  proposition (2-2-19),  so it is 

omitted . ∎ 

     The class of fibrewise completely regular spaces is fibrewise  

multiplicative   in the  following  sense . 
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Theorem: 2-2-30  

    If (X , ) is fibrewise completely regular space over B, with projection 

P  for all      . Then X= ∏         is a fibrewise regular  topological  

space  over B  with  projection   P  o 𝜋  for  any        . 

Proof: 

    Suppose X  is a fibrewise completely regular space overB,for all     

and with projection P  :X  B,then for any      , P  o 𝜋  : ∏    X  B 

is continuous .So ∏    X   is a fibrewise  topological  space over B , with  

projection  P  o 𝜋   such that Xb =(P  o 𝜋 )
-1

(b) for any b   B , then         

Xb = ( P  o 𝜋 )
-1 

(b) = 𝜋 
-1

(P 
-1

(b)) ={     )    :  x    X  ,  x     p
-1

(b) } is   

a subspace of ∏    X  and since the product of completely regular spaces 

is a completely  regular space , and every subspace  of a completely  

regular space is a completely  regular space , so it follows that every fibre 

subspace is a completely regular space and hence ∏    X  is fibrewise 

completely regular space . ∎ 

Proposition: 2-2-31  

    Let φ :XY  be an open ,closed and fibrewise surjection ,where X and 

Y are fibrewise topological spaces over B. If X is fibrewise completely 

regular, then so is Y. 
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Proof: 

     Let y  Yb ,where b   B and  let Vy  be an open set  containing y,  pick   

x   Xb , so that V  =  -1
(Vy) is an open set containing x .Since X is  

fibrewise completely  regular there exists  a nbhd W  of  b  and an open 

set Ux 
 
containing  x in XW  and a continuous  function    : XW   I sach 

that Yb   Uy   -1
(0) and  Xw   (Xw – Vx )     -1

(1) , and Yw   (Yw –Vy ) 

      -1
(1) . ∎ 

Definition: 2-2-32 

 A fibrewise topological space (X,) over B is called fibrewise T3
 

 
-space 

iff (X,) is fibrewise completely regular, T1-space.  

Definition: 2-2-33 

     A fibrewise  topological  space X over  B is  called fibrewise normal  

if each non-trivial  subspace of X  is normal , that is for b   B and disjoint 

closed sets H and K of Xb , there exist a pair of disjoint open sets U,V 

containing  H and  K  respectively. 

Example: 2-2-34 

 If X=    = B with  1,  2  are the usual topology, P:(X,  1)(B ,  2) is  

defined  by  P(x) = 1  for all x     , then  

Xb =  P
-1

 (b)   { 
                 
                  

 

Then   X is  fibrewise normal space over B . 
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Remark: 2-2-35  

     If X is  fibrewise normal space over B , then XB* is  fibrewise normal 

space over B
* 
for each subspace  B

*
 of  B . 

 Proposition: 2-2-36  

     Let    : X  X
* 

 be a closed fibrewise  embedding , where X and X
*
 

are fibrewise topological  spaces over  B. If X
* 

is fibrewise normal, then  

so is  X . 

Proof: 

     Let b be a point of  B and let H , K be disjoint closed sets of Xb , then 

  (H) ,  (K) are disjoint closed sets of X
*
b , since X

*
b is fibrewise normal 

there exists disjoint open sets U,V of X
*
b containing   (H) ,  (K) in X

*
b . 

Then   -1
(U)  and   -1

(V)  are  disjoint open sets of  Xb containing H          

and K . ∎       

Definition: 2-2-37 

     A fibrewise topological space over B is called fibrewise T4-space iff 

(X,  ) is fibrewise normal, T1-space. 
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Theorem: 2-2-38 

a) Closed subspaces of fibrewise T4-spaces are fibrewise T4-spaces. 

b) Every fibrewise T4-space is fibrewise T3-space. 

c) A product of fibrewise normal spaces is not necessarily fibrewise 

normal. 

Theorem: 2-2-39 

     If (X,  ) is a fibrewise topological  space over B  and p : X  B the 

Projection map is bijective, then every fibre subspace is trivial i-e  Xb, is 

empty or a one-point set .  

Corollary: 2-2-40  

     If (X,  ) is a fibrewise topological space over B and p: X  B  is 

bijective , then (X ,  ) is a Ti-fibrewise topological space for all i = 0,1,2,3,4 
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Definition: 2-2-41 

    (X,  ) is  fibrewise  completely normal  over  B  iff  every  non-trivial 

fibre subspace is completely normal ; that is for every pair A , B of 

separated subsets of Xb , there are disjoint open sets U and V of Xb , with 

A  U and B  V. 

 Example: 2-2-42 

Let X = B = {a, b, c}  with  X = { , X, {a}, {b,c}} and  B is the trivial 

topology , p : X  B is the identity projection , then (X , ) is fibrewise 

completely normal over B .  

 

Theorem: 2-2-43 

     If (X, ) is completely normal space and (X, ) is a fibrewise 

topological space over B, then (X, ) is a fibrewise completely normal 

topological space over B. 

 Theorem / 2-2-44 

     A fibrewise topological space (X , ) over B is fibrewise  completely 

normal topological space over B iff every subspace is fibrewise normal 

space over B . 
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Proof: 

⟹: let X be a fibrewise  completely normal space over B , and let Y be  

a subspace of X .Let A ,    Y be disjoint closed subsets. Then clearly       

 ̅     =       =      ̅ =   , so by complete normality there are disjoint 

open sets U , V    X , such that  A   U ,      V. Taking U   Y and    

V  Y,we have disjoint open sets in the subspace topology Y  containing 

A and  , respectively inY. It follows that Yis fibrewise normal space over 

B.  

⟸: Suppose every subspace of  X is fibrewise normal space over B , and 

let A ,      X  be   separated subsets , so that  ̅     =      ̅ =  . Let Y 

be subspace containing    ̅ and   ̅ . Since  Y is  normal , there are  disjoint 

open sets U ,V   Y such that   ̅   U and   ̅   V . Then since      ̅ and 

     ̅ , it follows that X is fibrewise completely normal space  over B .∎ 

Theorem: 2-2-45 

     A subspace of fibrewise completely normal space over B  is fibrewise 

completely normal space over  B . 

Proof: 

     By definition every subspace of X is normal, the same holds for every 

subspace A of X (as a subspace of A is also one of X, hence normal).  
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Definition: 2-2-46 

     A fibrewise topological space (X,  )  over B is  called  T5-space iff   

(X ,  ) is  fibrewise completely normal T1-space . 

      

Example: 2-2-47 

 Let  X =  B =   with   1,  2 are  the  usual topology of the real line ,     

P: (X,  1) (B ,  2) is the identity projection function , then (X,  1) is 

fibrewise  topological  space  over B . Consider  the  two  open  intervals   

  = ( 0 , 
 

 
 ) and    = (

 

 
 , 1 ) . The sets do not intersect :        =     , but 

the closures ,  ̅ = [ 0 , 
 

 
 ]  ,   ̅ = [ 

 

 
 , 1] with   ̅     ̅ = { 

 

 
 } . Nevertheless  

   and   are separated because  ̅     =    =      ̅ .   and    have the   

T5 property because   and   themselves are disjoint open sets.  
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Theorem: 2-2-48 

     Every   subspace of  fibrewise  T5- space over B  is fibrewise T5- space 

over B . 

Proof: 

     Since every fibrewise T5-space over B  is fibrewise completely normal 

T1-space over B , by theorem (2-2-46) , and  every subspace of  fibrewise  

T1-space over B  is  fibrewise  T1-space  over  B . So  every subspace  of  

fibrewise T5- space over B is  fibrewise T5-space  over B .∎  

  By the above theorems we write the following result :- 

 Result:  2-2-49  

i. Every subspace of fibrewise T5- space over B is fibrewise           

T4- space  over B . 

ii. Every  fibrewise T5- space over B is fibrewise T4- space  over B . 
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      If   I is an ideal on a topological space (X, ), a topology on X can be 

constructed called an ideal topology induced by the ideal I and, denoted 

by the * -topology or  *(I) or  *( I ,  ). 

The triple (X, *,I) or the pair (X, *(I)) are called ideal topological space, 

and if (X , ) is  a fibrewise  topological  space over B ,then  (X, *(I)) or  

(X , *,I) is a fibrewise  ideal topological  space  over  B. 

This chapter  introduces the definition of fibrewise ideal topological 

space, studies some of their properties, and discusses the definition of 

fibrewise local function for a fibrewise topology with a fibrewise ideal. 

I used the references [1],[2],[3], [5], [6], [15] and [22] 

3-1 Fibrewise ideals 

Definition:  3-1-1[2] 

     Let B be any set, and X be a fibrewise set over B, a non-empty 

collection I of subsets of X, is said to be fibrewise ideal on X, if it 

satisfies the following conditions: 

i)  If A1   I, and A2     A1, then A2     I 

ii)  If A1   I, and A2   I, then A1   A2    I.  
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Examples: 3-1-2  

i) Let X = {a, b, c} be a fibrewise set over B, I = { , {a}}, then I 

is fibrewise ideal on X.   

ii) Let X be a non-empty fibrewise set over B, then I = { } is        

a fibrewise ideal on X over B. 

iii)  Let X be a non-empty fibrewise set over B, then I = P(X) is      

a fibrewise ideal on X over B. 

iv) The class {A   X :       Xb, x     A} where b   B is an ideal 

on the fibrewise set X which we denoted by Ib. 

Lemma: 3-1-3 [2]     

     Let   : X Y be a fibrewise function, where X and Y are fibrewise 

topological spaces over B. Let Ib and Jb be two fibrewise ideals on X and 

Y respectively (for b   B) then: 

i)  If      is fibrewise surjection, then Jb      (Ib). 

ii) If      is fibrewise bijection, then    (Ib) = Jb. 

Proof:      

i) Let E  Y, and E   Jb, then for every y    Yb , y     E. Since     

is a fibrewise surjection, then    (Xb)    Yb , implies for every y 

    ( Xb) , y   E . Thus for every  x    Xb , x    -1
(E), implies 

 -1
(E)   Ib , then  -1

(Jb)   Ib . Thus Jb    (Ib). 
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ii) Let   : X  Y be a fibrewise bijection and let A    ( b) , then 

 -1
(A)   b implies for every x   Xb ,x    -1

(A) , then  (x)   A, 

for all x Xb ,since   is onto,then for every y Yb there is x  Xb , 

such  that  (x) = y   A for every y   Yb , implies A  Jb . So 

 (Ib)   Jb and from (i) thus    (Ib) = Jb. ∎ 

Lemma :3-1-4 [2] 

     Let Ψ:XY be a fibrewise injective, where X and Y are fibrewise 

topological spaces over B. If I is any fibrewise ideal on X, then                           

Ψ ( ) = { Ψ ( ) : A  I} is a fibrewise ideal on Y. 

3-2 Fibrewise local function with respect to fibrewise ideal topology. 

     In this section we will define fibrewise ideal topology using fibrewise 

local function.  First we give the following definition.    

Definition: 3-2-1[2] 

 Let (X, ) be a fibrewise topological space over B, with I  as an ideal on 

X. Then for all A   (X).A
*
(  , )={x  X:A U   for each neighborhood 

U of x } is called a fibrewise local function of A with respect to   and  . 

We will write A
*
(I) or simply A

*
for A

*
(I, ). 
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Examples: 3-2-2 [2] 

i) If (X, ) is any fibrewise topological space over B,   = { }, then  

A
* 
= cl(A) for any  A  X . 

ii) If (X, ) is any fibrewise topological space over B,   = P(X), 

then I is an ideal on X and A
* 
=   for any   A  X. 

Using the results of [8],[13]  

Lemma: 3-2-3  

     Let (X, ) be a fibrewise topological space with    and  J are ideals on 

X , and A and B be subsets of X . Then: 

a)         If   A  B, then A
*  

 B
*
  

b)         If I    ,  then A
*
(  )    A

*
( ) 

c)         A
*
= cl(A

*
)   cl(A)   (A

* 
is closed subset of cl(A) )  

d)          (A B)
*
= A

*  
B

*
 

e)          A
*
- B

*
 = (A-B)

*
- B

*
 

f)           If  U    , then  U   A
*
 = U  (U A)

*   (U A)
*
 

g)           If C     , then (A C)
*
= A

*
= (A - C)

*
 

h)            *
=   

i)            (A
*
)

*
= A

*
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Proof: 

a) Suppose A  B, x   B, then there exists U   , such that B   U  . 

Since A U   B U, then A U   . Hence x   A
*
. Thus A

*   B
*
. 

b) Suppose that x A
*
( ). Then there exists U   , such that A U   . 

Since      , then A U   and x  A
*
(  ). Therefore A

*
(  )   A

*
(  ). 

c) We have A
*  cl(  ) in general . Let x   cl(  ), then A

*  U     

for every U  , x   U.Therefore , there exists some y  A
*  U and 

U   , y   U. Since y  A
*
, A cl(U)   and hence x  A

*
. Hence x 

  A
*
. Hence we have cl(  )  A

*
 and hence A

*
= cl(  ), Again . Let 

x   A
*
= cl(  ) = { x   X : U   A     for any open set contains x} 

 { x   X : U   A    } = cl(A) . 

d) It follows from (a), (b) and (c) that A
*  

B
*  (A B)

*
.To prove the 

reverse  inclusion , let x   A
*  

 B
*
. Then x belongs neither to A

*
, 

nor to B
*
. Therefore there exists Ux ,Vx    such that Ux  A  I and 

Vx B    since I is additive , then (Ux  A )   (Vx  B)    .    

Moreovere since I is hereditely and (Ux   A)     (Vx    B) =              

(Ux Vx)   ( A B )=(Ux   Vx   A)   (Ux  Vx   B)   (Ux A )   

(Vx  B)     . So (Ux   Vx)   ( A B )    , since (Ux  Vx)    , so   

x   ( A B)
*
. Hence we abtain A

*  B
*
 = ( A B)

*
. 

e) We have by (d)     A
*
= [(A-B)   (A B)]

* 
 = ( A-B)

*   (A B)
*           

( A-B)
* B

*
.   Thus A

*
- B

*
   ( A-B)

*
- B

*
. By     (a), (b)   and  (c),          
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( A-B)
*
   A

* 
 and  hence  ( A-B)

*
-  B

*  A
*
- B

*
.     Hence A

*
- B

*
=             

( A - B)
*
- B

*
. 

f) If U   , then U A
*
= U  {x   X : A   V   I for any nbhd V of x}   

= { x   U: A   V   I for any nbhd V of x} = { x : U   A   V   I 

for any nbhd V of x} = U   (U A
*
)   U A

*
. 

g) Since C   , by (a) , (b) and (c) ,  C
*
=  . By (e) A

*
= (A-C)

*
and by 

(d)  (A  C)
*
= A

*   C
*
 = A

*
  

h) Since  *
={ x  X :    U     } =   , then  *

=   

i) (A
*
)

*
= { x  X : U   A

*    ,U    } and  since U   A
*  A*            

{ x  X : A   U    } = A
*
, then (A

*
)

*
   A*

  ∎ 

Now we are ready to define fibrewise ideal topology by using the 

following proposition.   

Proposition :3-2-4  

   Let (X,  ( be a fibrewise topological space over B, and   is an ideal on 

X. Then we define a map cl
*
(.) :P(X)P(X) by cl

*
A= cl

*
(A) (  ,  ( = 

A A
*
(  ,    ( for  all  A   P(X) . 

The map cl
*
( )  is a kuratowiski closure operator.  



Chapter three /Fibrewise ideal topological spaces 

67 
 

Corresponding to the ideal   on the fibrewise topological space (X,  ( , 

and so there exists a topology on X given by  *
 (  ,  ) = {    X :           

(cl
*
U)

c
 = X\ }. Which is finer than   and called the fibrewise ideal 

topology induced on X, by the ideal     

Proof: 

      Using theorem (3-2-3)  it  follows that : 

i. If A  B, since A
*  B

*
, A  A

*  B  B
*
. So cl

*
(A)    cl

*
(B). 

ii. cl
*
( A  B) = ( A  B)   ( A  B)

*
, since ( A  B)

*
= A

*  B
*
, so                

( A B)   (A B)
* 

= ( A  B)  A
*  B

*
=   A   A

*  B  B
*
=      

cl
*
(A)    cl

*
(B) . 

iii. cl
*
 (cl

*
(A)) = cl

*
(A   A

*
) = ( A   A

*
) ( A   A

*
)

*
= A   A

*
   A

*
      

  (A
*
)

*
, since (A

*
)

*
= A

*
, so A   A

*
   A

*  A
*
= A   A

*
= cl

*
(A). 

iv. cl
*
( ) =     *

=      =   . 

Therefore the map is the kuratowiski closure operator and hence by 

theorem (1-2-4)  it follows , there is a topology  *
(   or  *

(I , ) induced 

by the ideal   and is finer than the topology   , so  (X, *
(  )   or (X , *

,I) 

is a fibrewise ideal topological space.∎ 
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Definition: 3-2-5 

     If X is a fibrewise topological space and I is an ideal on X, then the 

topology defined by the above proposition is called the fibrewise ideal 

topology.   

Remark: 3-2-6 

      Note that   *
( ) =  *

(I, ) = {  X : (cl
*
U)

c
 = X\U}. Also cl

*
(A) =    

A  A
*
(I, ), for any  A  X . 

Definition: 3-2-7 

     Let (X, *
,  ) be a fibrewise ideal topological space over B . A subset A 

of X is said to be: 

i. *-open or I-open if A    *
(  ). 

ii. *-closed, or I-closed if  it's  complement is *-open (I-open) . 

Examples: 3-2-8 

1)  Let X = B = {a, b, c, d}. Let  X =  B = { , X, {a}, {a, b},{a, b, d}}. 

Define the identity projection  p :  (X ,  X)  (B ,  B) ; p(x) =  x for each  

xX .Then X is fibrewise  topology and let   = {  ,{d}} is fibrewise ideal 

on X . Now let A = { c , d} , then A
c 

= {a , b} and (A
c
)

*
= {c}, then  

cl
*
(A

c
) = A

c
   A

*
  = {c, d},  so (cl

*
(A))

c
  =  A

c
.{a, b}.Thus  A

c 
 is            

*-open set in      *
( ) , implies A is *-closed . 
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2) let (X, ) be a fibrewise  topological space over B , with fibrewise 

ideal    on X , then : 

i) If   = { }, then cl
*
(A) = cl (A). So  *

(I,  ) =  . 

ii) If     = Ƥ(X), then cl
*
(A) = A. So  *

(I, ) = is the fibrewise 

discrete topology. 

iii) If X ={a , b, c} ,  X is fibrewise topology over B ={  , X, {a}, 

{b,c}},     J  are  fibrewise  ideals  on  X  over B.  such  that        

I ={   ,{a}}, J={  ,{b}}, and let A = {a , b}, then in  *
( ) ,         

A
*
(I , ) = {b,c}, so cl

*
(A) = A A

*
={a ,b, c}, then cl

*
(A)  A , 

then A is not I-closed (*-closed) . But in  *
(J) , A

*
(J, )= {a}, 

then cl
*
(A) = A A

*
= {a , b}.Thus cl

*
(A) = A , so A is J-closed          

(*-closed)  set ; implies A
c 

= {c} is J-open(*-open) set .Then 

{c} is J-open (*-open) set in  *
(J). But not I-open (*-open) set 

in   *
(I). 

                using [14],[15] to write the following definition 

Definition: 3-2-9 

Let (X,  *
(I)) be  fibrewise ideal topological space , and let A X . Then 

a point x X is called an I-limit for A iff each I-open set U containing x, 
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U   (A\{x})    . The set of  all  I- limit  points  of A  is  denoted  by           

I- limit A  .      

Example: 3-2-10 

     Let X = { a , b , c , d} ,   = {  , X ,{d} , {a , c}, { a , c , d}} and                     

  = {  ,{b}},   = { , {c}} are fibrewise ideals on X , and let A={a , c} , 

then the   -open  sets  are{d}, {a, c}, {a, c, d} ,  , X  then a is   - limit A . 

Because for each  -open set   contains a ,       ( A\{a})    , since     

{a , c}  ({a , c}\{a})    , {a , c , d}  ({a , c}\{a})   . 

But a is not J-limit A. Because   J-open sets are   {a},{d},{a, c},{a,d},       

{a, c, d},  , X. Then there is a J-open set U such that   ( A\{a})     it 

is {a}  ({a, c}\{a}) =  . Thus a  is not  J- limit A . 

  Definition :3-2-11   

      A map  f : X Y is called I-open (*-open) (resp I-closed (*-closed) if 

the image of  each I-open (*-open) (resp I-closed (*-closed))  set in X is    

I-open (*-open) (resp I-closed (*-closed)) set in Y.  

Lemma: 3-2-12 [2] 

     Let ψ : (X , )  (Y, )  be continuous fibrewise function , where X 

and Y are fibrewise  spaces  over B .   Then  ψ : (X ,  *
(I))  (Y,  )   is               

a continuous fibrewise function for any ideal I on X . 
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Proof:  

     Since ψ : (X , )  (Y,  ) is continuous fibrewise function , then for 

every open set V in Y , Ψ
-1

(V)  is an  open  in  X , that is Ψ
-1

(V)     . 

Now consider  ψ  : (X ,  *
(I))  (Y, ) is fibrewise function , since  *

(I) 

is finer than   , then every open set in   is in  *
(I) , so  for every 

open set V in Y, Ψ
-1

(V) is an open set in X .Thus Ψ(X ,  *
(I)) (Y, ) 

is continuous  fibrewise  function .        

Definition: 3-2-13   

      A map  f : X  Y  is called I-continuous (*-continuous) if the  

inverse  image of each I-open(*-open) set in Y is I-open (*-open) in X . 

Example: 3-2-14 

     A constant map f : ( X ,  1) ( Y ,  2) is always continuous as map             

f : ( X ,   
 (I)) ( Y ,  2(J))  . Where I , J are any arbitrary two ideals  on 

X and Y  respectively.  

Proposition: 3-2-15 [2] 

    Let ψ : (X ,  1 , I) (Y,  2 ,ψ(I)) be a continuous fibrewise injection, 

where X and Y  are fibrewise spaces over B, and  I be a fibrewise ideal 

on X. Then ψ: (X ,   
 
, I)(Y,   

  , ψ(I)) is  I-continuous (*- continuous) 

fibrewise function . 
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Proof: 

     Let  U
c      

 
(ψ(I)) .Then cl

*
(U) = U = U   U*

, so U
*
(

 
ψ(I))   U and   

U
c  (U

*
(

 
ψ(I)))

c
. For any y   U

c
, there exists a neighborhood V of y  such 

that U   V   ψ(I) , so  ψ
-1

(U   V)   I , and so ψ
-1

(U)   ψ
-1

(V)   I. 

Therefor   ψ
-1

(y)    (ψ
-1

(U))
* 

 and ψ
-1

(y)   (ψ
-1

(U
*
))

c
 . Thus ψ

-1
(U

c
)           

(ψ
-1

(U
*
))

c
   and  so   ψ(U)

*
   (ψ

-1
(U

c
))

c  
 = ψ

-1
(U)  and   cl

*
( ψ

-1
(U)) =              

ψ
-1

(U)   (ψ
-1

(U))
*
= ψ

-1
(U) . Thus (ψ

-1
(U))

c
   𝜏 

 (I)  but ψ
-1

(U
c
) =                 

(ψ
-1

(U))
c
. Then ψ

-1
(U

c
)   

 
(I). Hence ψ is I-continuous (*-continuous) .∎ 

Lemma: 3-2-16 [2]  

     Let φ : (X ,  ,I) (Y,  , φ(I)) be open  continuous fibrewise function 

over B, where  X,Y  are  fibrewise  topological  spaces  over  B,with                

a fibrewise ideal I on X . Then φ
-1

(E
*
) = (φ

-1
(E))

* 
, for each subset E    Y. 

Proof:    

     Let  x   φ
-1

(E
*
) .  Then  φ (x)    E

*
,  so for every neighborhood V of      

φ (x) in Y , V   E   φ(I) . Since φ is open function , then for each 

neighborhood U of  x  in X , φ(U) is a neighborhood of φ (x) in Y, and 

also φ (U)   E   φ(I) then  φ
-1

(φ (u)   E)   I , implies U   φ
-1

(E)   I , 

for each neighborhood U of x in X .  Hence  x   (φ
-1

(E))
*
.  And  therefore                     

φ
-1

(E
*
)    (φ

-1
(E))

*
. 

Conversely, let x    (φ
-1

(E))
*
. Then for every neighborhood U of x in X, 

   φ
-1

(E)   I . Since φ is continuous function , then for every 
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neighborhood V of φ(x) inY, φ
-1

(V )   φ
-1

(E)   I, then φ(φ
-1

(V)  φ
-1

(E)) 

  φ (I) , implies that  V   E   φ(I ) , for every neighborhood V of  φ(x) in 

Y, hence  φ (x)   E
* 
, then x   φ

-1
(E

*
) . Thus (φ

-1
(E))

*    (φ
-1

(E
*
)  . ∎ 

Proposition: 3-2-17 [2] 

     Let φ : (X,  , Ib )  (Y, , Jb)  be a continuous fibrewise bijection, 

where X and Y  are fibrewise topological  spaces over B , with fibrewise 

ideals I , J on X , Y  respectively , then the following statements are 

equivalent : 

1) φ : (X ,  *
(Ib) ) (Y, 

*
(Jb))

 
 is a homeomorphism. 

2) φ (A
*
) = φ (A)

*
 ,  A    X. 

Proof: (1) (2) 

     Let y   φ (A
*
). Then φ

-1
(y)    A

*
, implies there is a neighborhood U 

of  φ
-1

(y) in X , such   that   A   U   Ib , then  φ(A  U)   φ(Ib) = Jb , and 

φ(A)   φ( )   Jb , since φ is  fibrewise   homeomorphism  then φ( )  is       

a neighborhood of y in Y and also y   (φ(A))
*
  .So (φ(A))

*  φ(A
*
). 

Conversely , let  y   (φ(A))
*
, then there is a neighborhood W of y in Y 

such that φ(A)  W   φ(Jb)  then A   φ
-1

( )   Ib  , and φ
-1

(y)    φ
-1

( ) 

since φ is fibrewise homeomorphism then φ
-1

( ) is  a neighborhood of   

φ
-1

(y) in X . Therefor φ
-1

(y)  A
*
. So y   φ(A

*
) .Hence φ(A

*
)   (φ(A))

*
. 

So finally we have φ(A
*
) = (φ(A))

*
. 
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(2) (1)  let U
c
    *

(Ib) then U
*   U and φ(U

*
)    φ(U) by (2) ,    

(φ(U))
*
= φ(U

*
)    φ(U) , and   φ(U) = φ(U)   (φ(U))

*
= cl

*
( φ(U)) , hence 

(φ(U))
c
   *

(Jb) . Thus φ is open function . Similarly , we prove that        

φ
-1

 : (Y, 
*
(Jb))   (X , *

(Ib) )   is  an  open  function ,  and  so  φ  is                 

a homeomorphism. ∎ 

3-3 Fibrewise local function over b B and the generated fibrewise 

topology over B on Xb:  

Definition: 3-3-1 [2] 

     Let (X,  ) be a fibrewise  topological space over B. with fibrewise 

ideal    on X , if b   B with  Xb   , then   
 (I ,  ) = { x  Xb : A     , 

for each neighborhood   of x}. Will be called fibrewise local function of 

A over b. 

     When there is no chance for confusion we will simply write   
 (I) or 

  
  for   

 (I, ). And  we  define  the  closure  operator on Xb , to be             

cl
*
(Ab) = Ab    

  ,  for every A X , where  Ab= A  Xb ,  and  hence            

it generates a new fibrewise topology on Xb over b to be                                         

  
  

= { Ab    Xb : (cl
*
Ab)

*
 =  (Xb\ Ab)} which is finer than    

.  

Notations: 3-3-2 

     If I is an ideal on X over B, then  

i) Ib = {A   X :   x   Xb , x   A} 
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ii)    
 = { A   Xb : A   I } = {A   Xb: A   I } 

iii)    
 = { A   XB : X = XB = P

-1
(B)  }  

Example: 3-3-3 

       Let (X,  ) be  a fibrewise   topological  space  over  B. such that ,         

X = {1,2,3,4}   ={  , {4},{1,3},{1,3,4}, X}  with  a fibrewise    ideal           

I = {  , {1}} on X , let Ab = {2} for  any  b  B, then   
 = {2}, implies     

cl
*
( Ab) = Ab  A

*
b ={2}, so cl

*
( Ab) = Ab , and so Ab is I-closed (*-closed) 

in  *
(I), then    

    *
 (Ib).  But if  I = {  } , then A

*
b = cl( Ab) , implies 

cl
*
(Ab) = cl(Ab) , then  *

({ }b) =    
.And if I = p(X) on X, let Ab ={1,3} 

for any b   B , then Ab
*
=   and hence cl

*
( Ab) = Ab , then  *

( (X)) is the 

fibrewise discrete  topology on Xb . 

Lemma: 3-3-4  

      Let (X ,  ) be  a fibrewise  topological space over B with fibrewise 

ideal I on X , then for every  A  X and any b    B. 

1) Ab
*
 = Xb   A

* 
 

2)   
 
(I) = { Xb        *

(I) } =   
  

 . 
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Proof: 

1) Since Ab
*  Xb and  Ab

*
   A

*
, then Ab

*  Xb  A
* 
. 

Conversely, let x   Xb  A
*
, then x   Xb and x   A

*
, implies x   Xb 

and for each  neighborhood    of x,  A       , so  x   Ab
*
, then                  

Xb  A
*  Ab

*
. Hence Ab

*
= Xb  A

*
. 

2) Let (Ab
*
)

c     
 
(I) , then cl

*
( Ab) = Ab and cl

*
( Ab) = Ab  Ab

*
,  then  

Ab  = Ab  Ab
*
 , since Ab = Xb  A and Ab

*
= Xb  A

* 
that's implies    

Ab = ( Xb  A)   (Xb  A
*
) = Xb ( A  A

*
) = Xb   cl

*
( A) , and so  

A= ⋃     b = ⋃     Xb    cl
*
( A)) = X  cl

*
( A) = cl

*
( A),hence        

A
c
    *

(I). Then every element (Ab
*
)

c     
 
(I) is an element in    

 . 

Lemma: 2-3-5 

      Let (X, ,I) be a fibrewise ideal  topological space over B with 

fibrewise  ideal I on X , then X
*
b = Xb, for  all  b  B  iff  I    { }. 

Proof: 

     ⟹:  Let for each b  B, Xb
*
= Xb.Then for every x   Xb ,    Xb    , 

for each open set   containing x , then      for every      , that is 

implies I    ={ }.  

⟸: Conversely, let I    = { }, then X = X
*
and so Xb= Xb  X = Xb  X

* 

= Xb
*
 . ∎ 
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Theorem: 3-3-6 

       Let (X,  , I)  be  a fibrewise  ideal topological space over B with             

a fibrewise ideal I on X ,  and A   X  then : 

i)  { Ab
*
 ; b  B} = ( { Ab ; b  B})

*
= A

*
 

ii)  { Ab
*
 ; b  B} = ( { Ab ; b  B})

*
=   

Proof: 

i) Since Ab
*
= Xb  A

*
, then  Ab

*
=  ( Xb  A

*
) =  ( Xb { x  X: 

      for any nbhd U of x }) =  { x   Xb  X:       for 

any nbhd U of x }  =    { x   Xb :         for  any  nbhd          

U   of x } =  { Ab : b  B}
*
 = ( { Ab : b  B})

*
= A

*
 

ii)  Ab
*
=  ( Xb  A

*
) =  ( Xb { x  X :       for any nbhd U 

of x } =  { x   Xb   X ,       for any nbhd U of x } 

=  {x  Xb X  :       for any nbhd U of x }=  { Ab
*
 :      

b  B} = ( { Ab: b  B})
* 
=    .∎  
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     The aim of this chapter is to study separation  axioms in fibrewise 

ideal topological spaces.  particularly, define T0-spaces, T1-spaces,       

T2-spaces, T3-spaces , T4-spaces , and T5-spaces in fibrewise spaces in the 

context of ideal topological spaces . 

     In addition, to discuss some of the operations of separation axioms,   

products of fibrewise ideal topological spaces , and some theorems of 

continuous fibrewise functions on separation axioms in fibrewise ideal 

topological spaces.      

4-1 Preliminary 

In this section I used definitions in [11] , [12] and [19] 

Definition: 4-1-1  

     A fibrewise ideal I is said to be: 

1) Fibrewise condense or  - fibrewise boundary if     I = { } 

2) Fibrewise condense if Po(X)   I = { }, where Po(X) is the family 

of all open sets in a fibrewise ideal topological space (X, *
(I))  

Notation: 4-1-2  

     The set of all open sets of a fibrewise ideal space (X ,  *
(I)) over B 

containing a point x  X is denoted by Io(X ,x). 
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  In the section we used [4], [5], [9], [10], [11],[12], [14], [19],  and [21] 

to define  sepanation axioms in fibrewise ideal  

4-2   Fibrewise ideal T0- topological spaces: 

Definition: 4-2-1 

     A fibrewise ideal topological space (X, *
(I)) over a topological space 

B is said to be fibrewise T0-space if every non-trivial fibrewise ideal 

subspace is T0-space i-e, for any distinct pair of points in Xb, there is      

an I-open (*-open) set containing one of the points but not the other. 

Example: 4-2-2 

     If  X =   ,  1, is the cofinite  topology , and  B =   ,  2  is the trivial 

topology , and  p : ( X ,  1 ) ( B ,  2) , p(x) = x
2
 , and I ={ A    , A is         

a finite subset of   } . Then for any A    , 

A
*
(I ,  )= {

  ̅                        
                        

  

So  cl
*
(A) = A   A

*
 (I ,  ) =   ̅ , so   *

 =  1 , the cofinite topology . 

But for any  b  B , Xb= {
{ √  √ }                          

 { }                                       
                                              

 

Hence every non-trivial fibrewise ideal  subspace  is  discrete  and so               

(  ,  *
(I))  is a fibrewise ideal T0-space over B .  
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Theorem: 4-2-3 

     Let (X,  ) be a fibrewise topological space over B, and I  is fibrewise 

ideal space on X , then ( X ,  *
(I)) is fibrewise  T0-space  iff  for each pair 

of distinct point  x , y  of  X   { }̅̅ ̅̅  { }̅̅ ̅̅  

Proof: 

     ⇒: Let  (X ,  *
(I)) be  a fibrewise T0-space over B , and x , y be 

two distinct points in X . Then there exists  an  I-open set U containing  

x  does not containing  y , or there exists an I-open set containing  y 

and does not containing  x . Let x   U, y  U, where U is I-open. Then 

X\U  is a closed set contains  y  and does not contain  x . Thus      

{ }̅̅ ̅̅   X\U,   x  { }̅̅ ̅̅  .Thus { }̅̅ ̅̅  { }̅̅ ̅̅  

     ⟸:  Let x , y be distinct points in Xb ,where b  B and { }̅̅ ̅̅  { }̅̅ ̅̅ . 

Then there exists at least one point of X  belong to any one of the two 

sets, and not the other, let x { }̅̅ ̅̅ , x  { }̅̅ ̅̅    So  x   X\{ }̅̅ ̅̅  , since X\{ }̅̅ ̅̅  

is an open  set does not contain y . So (X, *
(I)) is a fibrewse T0-space  

over B . ∎ 

Theorem: 4-2-4 

     Every subspace of fibrewise ideal T0-space over B is a fibrewise  

ideal T0-space  over B. 
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Proof: 

     Let  Yb  be  a non-trivial subspace of a fibrewise ideal T0-space         

(X ,  *
(I)) over B and x , y be two distinct points of Yb . Then either  

there exists an I-open set U in X such that x  U and y U or there 

exists an I-open set V in X  such that x   V and y   V, then either        

U   Yb = Ub  is  I-open  in  Yb with  x   Ub,   y  Ub  or  V   Yb  = Vb 

is an I-open in Yb with y  Vb, x  Vb. Hence (Y,   
 ( IY)) is a fibrewise 

ideal  T0-space over B . ∎ 

Definition: 4-2-5 

     Let (X ,  ) , (Y, ) be two fibrewise topological spaces over B , and  I 

be a fibrewise ideal  on X , a function   f : (X ,  *
(I))  (Y , ) is said to 

be point fibrewise  I-closure  one-to-one  iff for x , y   Xb , b   B such 

that { }̅̅ ̅̅  { }̅̅ ̅̅ , then  cl({f (x)})   cl({f (y)}). 

Theorem :4-2-6 

     Let (X,  ) and (Y, ) be two fibrewise topological spaces over B and I  

is fibrewise ideal on X . 

If  f : (X ,  *
(I))(Y,) is  a point  fibrewise I-closure one-to-one and         

(X,  *
(I)) is fibrewise ideal T0-space over B , then  f  is one-to-one . 
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Proof: 

     Since ( X,  *
(I)) is fibrewise ideal T0-space over B , then { }̅̅ ̅̅  { }̅̅ ̅̅  for 

any  x   y in Xb , b B . But  f is point  I-closure one-to-one implies     

cl({f (x)})  cl({f (y)}) , and so  f (x)  f (y) .Thus  f  is one-to-one . ∎ 

Theorem: 4-2-7 

     If  f : ( X ,  *
(I))  (Y,)  is a function from fibrewise ideal T0-space      

( X ,  *
(I)) over B  into a fibrewise topological space (Y, ) over B .Then  

f  is point  I-closure one-to-one iff  f is one-to-one.  

Proof: 

     ⟹: By Theorem (4-2-6) it is clear if  f  I- closure one-to-one , then f is 

one-to-one. 

⟸ :  Assume  f : (X ,  *
(I))   (Y,) is one-to-one such that (X ,  *

(I)) is 

fibrewise ideal T0-space over B , and (Y, ) is fibrewise topological space 

over B , for each pair of distinct points x ,y of Xb, b B , then f (x)  f (y) 

since (X ,  *
(I)) is fibrewise ideal T0-space over B, by Theorem (4-2-3) 

{ }̅̅ ̅̅  { }̅̅ ̅̅  ,and so cl({f(x) })   cl ({f(y)}).This implies f is point  I-closure 

one-to-one . ∎ 
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Theorem :4-2-8  

     Let (X,  ) and (Y, ) be two fibrewise topological spaces over B and I  

is fibrewise ideal on X and  J is fibrewise ideal on Y .  

If  f : (X,  *
(I)) (Y,

*
(J)) is a fibrewise  injective continuous , function , 

and Y is fibrewise ideal T0-space  over B . Then  (X,  *
(I)) is  fibrewise 

ideal T0-space  over B. 

Proof: 

     Let x and y be any two distinct points of Xb  , b  B , since f is 

fibrewise  injective and Y is fibrewise ideal T0-space  over B , there exists 

an I-open set Ux in Y such that f (x)    Ux and f (y)    Ux or there exists 

an I-open set Uy  in Y such that f (y)   Uy and f (x)    Uy , with                  

f (x)   f (y) . By fibrewise I-continuonity   of  f , then f
 -1

(Ux) is I-open set 

in (X ,  *
(I)) , such that x   f

 -1
(Ux) and y  f

 -1
(Ux) or f

 -1
(Uy) is I-open set 

in (X , *
(I)), such that y   f

 -1
(Uy) and x  f

 -1
(Uy) .Thus (X,  *

(I))is           

a fibrewise idealT0- topological space  over B .∎ 

4-3- Fibrewise ideal T1- topological spaces: 

Definition: 4-3-1 

     A fibrewise ideal topological space (X,  *
(I)) over B is a fibrewise 

ideal T1-space over B if every non-trivial fibre  subspace is T1-space i-e, 
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for any distinct points  x , y of  Xb , there exists a pair of  I-open sets in Xb   

one containing  x  but not  y  and the other containing  y but not  x . 

Example :4-3-2 

     Let   X =   ,  1 is the co-countable topology , B =   ,  2  is the trivial 

topology , and I = { A    : A is countable}. p : ( X ,  1 ) ( B ,  2)  

defined  by    p(x) = {
           
           

     

Then  p is continuous and for any  b  B  

Xb = p
-1

(b) =  {

            

 
 

           
             

 

Then Xb  is a discrete  ideal  subspace  of (  ,  1)  if  b =1  and Xb is                  

a co-countable ideal subspace of ( ,  1) if b = 0 .Hence every non-trivial 

fibre subspace is a T1-space , so (X ,  *
(I)) is a fibrewise  ideal T1-space 

over B. 

Theorem: 4-3-3  

     If a fibrewise ideal topological space (X,  *
(I)) over B is fibrewise       

T1-space over B, then each one point set is I-closed in X. 

Proof: 

     Let (X,  *
(I)) be a fibrewise T1-space over B, and  let  x  Xb if  y  Xb 

with  y  x , there  exists two I-open sets such that x   Ux , y   Ux , and       
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x   Vy , y  Vy . Hence y  Vy    X\{x} . So X\{x} is a union of I-open 

sets. Then {x} is I-closed ∎ 

Theorem :4-3-4 

      Let X be a fibrewise T1-space over B, and  f : ( X ,  )   (Y,
*
(J)) is 

an I-closed surjective function . Then (Y,
*
(I)) is fibrewise ideal T1-space 

over B.  

 Proof:  

     Suppose y   Y. Since f is surjective, there exists a point x   X such 

that y = f (x). Since X is fibrewise T1-space over B , {x} is closed in X. 

Again by hypothesis, f ({x}) = {y} is I-closed in Y. Hence Y is fibrewise 

ideal T1-space over B. ∎ 

Theorem :4-3-5 

     If (X,  *
(I)) is fibrewise infinite T1-space over B, and x   I-limit A for 

some A  X, then every I-neighborhood of x contains infinitely  many 

points of A . 

Proof: 

     Let x   I-limit A  and  suppose U is a I-neighborhood of x, such that  

U  A is finite . let U A ={ x1, x2, x3……… xn} = C. Clearly C is closed set 

. Hence V = (U A)\(C\{x}) is  I-neighborhood  to the point x and  

V (A\{x})=   which implies that  x   I-limit A , which is a contradiction 

to our assumption.Therefore the given statement in the theorem is true . ∎  
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Example: 4-3-6 

     Let X = { a, b , c, d} ,  ={ X,   , {b}, {a, b} , { b,c} ,{ a,b,c},{a,b,d}} 

is fibrewise topological space over B , with fibrewise ideal  I = {  , {d}} , 

and let  A = { a,b} then  a  is I-limit A , since every I-open U containing 

a, U ( {a,b}\{a})    . But b is not I-limit A, since there is I-open {b} 

containing b such that  { b}  ({a,b}\{b})     

Theorem: 4-3-7 

      Let (X, *
(I)) and (Y, 

*
(J)) be two fibrewise ideal topological spaces 

over B, and  f : (X ,  *
(I)) (Y,

*
(J)) be  an injective  and I-continuous  

function . If (Y, 
*
(J))  is fibrewise T1-space  over B , then (X ,  *

(I)) is 

fibrewise T1-space  over B.  

  Proof: 

      The proof is similar to the proof of Theorem (4-2-10). ∎ 

Theorem :4-3-8 

     In  the  fibrewise  ideal  topological  space (X , *
(I))  over  B , if  X  is 

fibrewise ideal  T1-space over B . Then X  is  fibrewise ideal   T0-space  

over B. 

Proof: 

     Let (X,  *
(I)) be a fibrewise ideal T1-space over B , and let x , y   Xb , 

where b   B such that x  y , since Xb is fibrewise ideal T1-space , then 
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there  exists  open  sets  U ,V  such  that U containing x but not y and            

V  containing  y  but not  x , then X is fibrewise ideal  T0-space over B. ∎ 

4-4 Fibrewise ideal T2''Hausdorff" topological spaces: 

Definition: 4-4-1 

     A fibrewise ideal topological space (X ,  *
(I)) over B is said to be 

fibrewise  ideal T2'' Hausdorff ''-space if every non- trivial fibrewise ideal 

subspace is T2-space i-e , for each pair of distinct  points  x , y of  Xb , 

there exists a pair of disjoint  open sets in Xb , one containing x and the  

other containing  y where b   B . 

Example: 4-4-2 

     Let X =  ,  1 the usual topology on  ,  B =   with  2 the trivial 

topology , if   p : (  ,  1 )  (  ,  2) defined by  p(x) = x
2
  

let   I = { A    , A is a finite subset of   } . 

Then  A
*
( I ,  ) = { x   : U A   I for any open set U containing x} = 

{
 ̅                                        
                                      

   

 So  *
=   is the usual topology  

 For  b   B , Xb =  p
-1

(b) = {
{ √  √  }                            

{ }                                
                                                 

 

So every non-trivial subspace is a T2-space . 

Thus (  ,  *
(I)) is fibrewise ideal T2-space over B .  
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Theorem: 4-4-3    

      If (X,  
) is  a fibrewise Ti-space over B , then (X , *

(I)) is a fibrewise 

ideal  Ti-space over B  for  i = 0,1,2 .  

Proof: 

     The proof is obvious, since every  *
(I) is finer than   and the result 

follows from Theorem (1-5-27). ∎ 

Theorem: 4-4-4    

     Let (X,  ),  (Y,)  be  two fibrewise topological spaces over B and I,  J 

are  fibrewise ideals  on X ,Y respectively .   

If  f : (X ,  *
(I))  (Y, 

*
(J)) is injective open and continuous,  and              

(Y, 
*
(J)) is fibrewise ideal T2-space , then (X ,  *

(I)) is fibrewise ideal      

T2-space  over B.  

Proof: 

     Since f is injective,  f (x)    f (y)  for each x , y   Xb , and x  y .    

Now  (Y, 
*
(J))  being  fibrewise ideal T2-space , there exists I-open sets 

G , H in Yb ,  where  b   B,  such  that  f (x)  G , f (y)   H,  and   G  H  

=   . Let U = f
 -1

(G)  and  V = f
 -1

(H) .Then by  hypothesis , U and V are   

I-open sets in Xb . Also, x   f
 -1

(G)  =  U, y   f
 -1

(H) = V, and U V =        

f
  -1

(G)   f
  -1

(H) =   .Hence (X ,
*
(I)) is fibrewise ideal T2-space over B .∎  
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Corollary: 4-4-5 

     Let (X ,  *
(I)) , (Y,

*
(J)) be two fibrewise ideal  topological spaces 

over B,  If  f :(X, *
(I))  (Y,

*
(J))  is injective and I-closed and (Y,

*
(J)) 

is  fibrewise  ideal T2-space over B ,  then (X ,  *
(I))  is fibrewise ideal           

T1-space  over B . 

Theorem :4-4-6   

      If  f : (X ,  *
(I))  (Y,

*
(J)) is I-continuous , (Y, 

*
(J)) is fibrewise 

ideal T2-space  over B, then the set { (x1,x2) : f (x1) = f (x2) } is I- closed 

in X X . 

Proof: 

     Let  A = { (x1, x2) : f (x1) = f (x2) } . If (x1, x2)   (X  X)\A ,  then                  

f (x1)   f (x2) .Since (Y,
*
(J)) is fibrewise ideal T2-space , there exists 

disjoint  I-open sets V1, and V2 such that f (xj)   Vj for    j = 1,2 ,  then by  

I-continuity  of  f , Thus (x1, x2)   f
  -1

(V1)   f
  -1

(V2)   Io(x1, x2) , since 

the product of two  open  sets  is  open set . Therefore  f
 -1

(V1)   f
 -1

(V2)               

   (X  X)\ A. It follows that (X  X)\ A is I-open , and hence A is           

I-closed set in  X  X . ∎ 

Theorem : 4-4-7 

     Let  (X ,  *
(I)) and (Y,

*
(J)) be two fibrewise ideal topological spaces 

over B, and  f : ( X ,  *
(I))  (Y,

*
(J))  is injective, surjective and I-open, 
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then  (Y,
*
(J)) is fibrewise ideal T2-space  over B if (X ,  *

(I)) is 

fibrewise ideal T2-space  over B. 

Proof: 

     Let y1, y2   Yb such that y1  y2 . Then f
  -1

(y1) and f
  -1

(y2) are different 

points of  Xb . Since  f  is surjective there exists x1, x2   Xb  such that                 

f (x1) = y1 , f (x2) = y2 and x1  x2 from hypothesis (X , *
(I)) is a fibrewise 

ideal T2-space , so there exists U,V   * 
 such that x1   U , x2    V and    

U V =  . This implies that  f (x1) = y1   f (U ) ,  f (x2) = y2   f (V ). Since 

f  is I-open ,   then  f (U ), f (V )   *
, and  f  is  injective,    f (U )  f (V )    

= f (U  V) =   . Thus (Y,
*
(J))  is fibrewise ideal T2-space over B.∎ 

Theorem: 4-4-8 

     In fibrewise ideal T2-space over B a sequence converges to unique 

point.  

Proof: 

     Assoming that x and y are two distncet points and ( xn) converges to x 

and y . Since (X,  *
(I)) is fibrewise ideal T2-space over B, there exists U, 

V     *
 such that x   U, y   V and U  V =   . Since ( xn) converges to x 

and U is neighborhood of x , then there exist  n1   N such that xn  U for 

all n   n1 .Since (xn) converges to y  and V is a neighborhood of y , then 

there exist n2   N such that xn  V for all n   n2 , let n0  = max{n1, n2}  
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then for all n  n0, xn   Uand xn V.Hence U V  .This is                         

a contradiction. ∎ 

Theorem: 4-4-9 

     Let  A be a compact set in a fibrewise ideal T2-space (X , *
(I)) over B, 

then A is  I-closed . 

Proof: 

      Let  x   Ac
 . For each y   A,  we have x   y.  So  there  are  disjoint   

I-open sets U and V. So that x  U and  y  V. Then {V: y   A} is            

an I-open  cover of  A . Let {V1, V2,…… Vn} be a finite  subcover .  

Then 
 
 

   
 i   is an  I-open set containing   x  and contained  in A

c
. Thus 

A
c
 is   I-open set and A is  I-closed set .∎  

4-5 Higher separation axioms in fibrewise ideal topological spaces: 

     The aim of this section is to study higher separation axioms in 

fibrewise ideal topological spaces over B. 

Definition: 4-5-1 

      A fibrewise ideal topological space (X, *
(I)) over B is said to be 

fibrewise ideal regular, if every non- trivial fibrewise subspace is regular. 
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Definition:  4-5-2 

     A fibrewise ideal topological space (X,  *
(I))  over B  is  said   to  be    

a fibrewise ideal T3-space  if every non- trivial fibre subspace is regular 

and T1-space . 

Example: 4-5-3 

     Let  X = Ƶ is the set of integers ,  1  is  the  discrete topology on Ƶ ,        

B = Ƶ  is the  set of  integers  numbers  2 is the discrete topology , I ={ }  

is  fibrewise  ideal on  X.   

p : ( X ,𝜏1)   ( B ,𝜏2)  defined by 
 
p(x) = {

              

               

then p is continuous and for any  b   B 

Xb= p
-1

(b)  = {
                             
    { }               
                             

 

Where  Ƶ
+
 = {1,2,……} ,     

= {……..,-2,-1}  

So every non-trivial fibre subspace is discrete and so (Ƶ, *
(I)) is 

fibrewise  ideal T3- topological space  over B . 

Theorem: 4-5-4 

     In a fibrewise ideal topological space (X, *
(I)) over B, X is  fibrewise 

ideal regular iff for every I-open set V containing  x  X , there exists     

an I-open set U of X such that  x   U      (U)   V. 
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Proof: 

    ⟹: let V be an I-open subset such that   x  V.  Then X\V is an I-closed 

set not containing x.  Therefore  there exists disjoint I-open sets U and   

W  such that x  Uand X\V W. Now  X\V   int (W) , implies X\int
 

(W)   V.  Again  U   W =    ,  implies U   int(W) =    , which  implies  

that    (U)   X\ int
 
(W)   V. Therefore  x U    (U)   V. 

⟸ let F be an I-closed set not containing x. By hypothesis, there exists     

an I-open set U such that x U cl
*
(U)  X\F. If W = X\    (U), then U 

and W are disjoint I-open sets such that x U and F   W. ∎ 

Definition: 4-6-1 

     A fibrewise ideal topological space (X ,𝜏*
(I)) over B is said to be              

a fibrewise ideal  completely regular , if every non- trivial fibre  subspace 

is  completely  regular  i-e for every I-closed set A   Xb  and any  x  A , 

there exist a continuous function  f : Xb  I  such that f (x) = 0, f (A) = 1 , 

where I is the unit interval , b   B  .  

Theorem :4-6-2 

     Every subspace of  fibrewise  ideal completely  regular (X ,  *
(I))  is  

a fibrewise ideal completely regular. 

Proof: 

     Let (X,  *
(I)) be a fibrewise  ideal completely regular space over B , 

and Y be a subset of X , let x   Y and V be I-closed set in Y not 
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containing x . Then V = A Y, where  A is an I-closed set in X, Hence     

x   Y  X , implies   x   X and  A is a closed set in X not containing x , 

since X is  fibrewise ideal completely regular over B , then there is 

continuous function    f: X  I  such that f (x) = 0 ,  f (A) =1.   

Let g = f /Y then g : Y I is continuous  since  V  A , implies g (V) =1, 

g(x) = 0 . Therefore (Y,  
 (IY)) is a fibrewise  ideal completely regular 

over B . ∎ 

Example: 4-6-3 

     Let X = B =    and  1,  2     are  the  usual  topology  on   .   If                      

  : ( ,  1)   (  ,  2 )  defined by  p(x) = x , and let I = { A    : A is       

a finite subset of   }. Then (  ,  1)   fibrewise   topological  space  over 

 (  ,  2 )   and (  ,  *(I)) is the usual topology , and hence (  ,   
 (I)) is 

fibrewise completely regular . 

Theorem : 4-6-4 

If φ : ( X ,  1)   (Y,  *
(I)) is  a fibrewise  continuous  bijective   and  

open function and X is   fibrewise completely regular  over B ,  then Y is 

a fibrewise ideal completely regular over B.  

Proof :  

     Let  y  be any point in Y, H is I-closed set such that  y   H , since   is 

surjective  continuous  function  then there exist  x  in X  such that           
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y =  (x) , and   -1
(H) = A  is I-closed set  in X , and  x    -1

(H).    Since        

X is fibrewise completely regular, there is a continuous function                        

f : X  I  such that f (x) = 0 , f (A) = 1 , the composition function                        

f  o φ -1
 = q : Y  I  is  continuous function such that  q(y) = 0, q(H) = 1. 

Thus Y is a fibrewise ideal completely regular over B .∎  

Definition:  4-7-1 

     A fibrewise (X, *
(I)) space  over B is called  fibrewise ideal 

Tychonoff space ( or T3
 

 
  ) if it is fibrewise ideal completely regular ,     

T1- space over B.  

Theorem: 4-7-2   

     If  (X,  *
(I)) is a fibrewise ideal T3

 

 
  space  over B , then (X ,  *

(I)) is   

a fibrewise ideal T3-space  over B . 

Proof:    

      Suppose F is I-closed set in X not containing x . If X is fibrewise  

ideal T3
 

 
  , we can choose any continuous function with  f (x) = 0 and          

f (F) = 1. Then U =  f 
–1

(  
  

 
)  and  V =  f 

–1
( 

  

 
  )   are  disjoint  I-open  

sets  with x    U , F  V .Therefore X is fibrewise ideal regular .Since X 

is fibrewise ideal T1 . Then X is T3. ∎ 
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Theorem :4-7-3   

     If  (    ,   
 (I)) is a  fibrewise  ideal topological spaces over B for all  

     . Then X = ∏        is a fibrewise ideal  T3
 

 
  space over B iff  each 

(X ,  *(I )) is a  fibrewise ideal T3
 

 
  space over B. 

Proof: 

  ⟹: If X =∏      is fibrewise ideal T3
 

 
  then each    is homeomorphic  

to a subspace of X , so each    is fibrewise ideal   T3
 

 
   space . 

⟸ : Conversely , suppose each    is fibrewise ideal T3
 

 
  space over B , 

and that F is an  I-closed  set in X not containing a.There is a basic I-open 

set U such that  a  U = ⋂    
   

   (Ui)    X\F . For each i we can           

bick   a continuous function     
 :    

 [0,1] with    
 (   

) = 0, and     

    
 (X\Ui) =1.  Define f : X [0,1]  by  f (x) = max {    

 o    
)   }   

  . 

Then f is continuous and f (a) = max  {    
 (   

)}    
   = 0  

If  x  F, then for some i , x i   U i , and    
 (   

) =1 , so f (x) = 1. 

Therefore  f (F) = 1  and  X is fibrewise ideal  T3
 

 
    space over B .∎ 

Definition: 4-8-1 

     A fibrewise ideal topological space (X, *
(I)) over B is said to be               

fibrewise  ideal normal if every non- trivial  fibrewise  subspace is normal 

space over B. 
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Definition: 4-8-2 

     A fibrewise ideal topological space (X, *
(I)) over B is said to be               

a fibrewise ideal T4-space over B if  it is fibrewise ideal normal space as 

well  as  a fibrewise  ideal T1-space over B. 

Example: 4-8-3 

     Let X = B =    and  1 ,  2 are the trivial  topologies  on   , and I 

={ } is  an ideal on X , P : (X ,  1)    (B,  2 )  defined by  p(x) = x then 

X is fibrewise  topological space  over B, and A
*
= cl(A) , then cl

*
(A) 

=A  A
*
 = cl(A) for any  set  A    . So  *

=  . Hence every non-trivial 

fibre subspace is a fibrewise ideal T4-space. So (  ,  *
(I)) is a fibrewise  

ideal T4-space over B. 

Theorem: 4-8-4 

     Let (X, *
(I)) be a fibrewise ideal topological space over B, where I is 

completely codense, and if for any disjoint I-closed  sets A and B, there 

exists disjoint I-open sets U and V such that A  U  and B  V . Then for 

any I-closed set A and I-open set U containing A, there exists an I-open 

set U such that A  U  cl
*
(U)   V. 

Proof:  

     Suppose A is I-closed and V is I-open set containing A. Since A and  

X\V are disjoint I-closed sets , there exists disjoint I-open sets U and       



Chapter four/ Separation axioms in fibrewise ideal topological spaces 

99 
 

W such that A  U and X\V  W, Since X\V is I-closed , and W is  I-open 

, X\V   int
*
(W). Then X\ int

*
(W) V. Again U W =   ,then U   int

*
(W) 

=    , U   X \ int
*
(W). Then cl

*
(U)   X \ int

*
(W)   V. Thus U is the 

required  I-open set with A  U    cl
*
(U)   V .∎ 

Theorem: 4-8-5 

     Let (X, *
(I)) be a fibrewise ideal normal space over B, then every 

closed fibrewise ideal subspace of (X,  *
(I)) is fibrewise ideal normal 

space over B. 

 Proof: 

     Let (X, *
(I)) be  a fibrewise  ideal  normal  space over B, and   Y  be  

a closed subspace of X. To prove (Y,   
 (IY)) is fibrewise normal space 

over B, with the relative topology. Let H and K be two I-closed disjoint 

subsets of Y. Then we have H = Y  A, K = Y  B,    where  A and B are  

I-closed sets  in X . Now Y is I-closed and A and B are I-closed. 

Hence Y  A and Y  B are disjoint I-closed subsets of X. Since (X, *
(I)) 

is  fibrewise normal corresponding to the disjoint I-closed subsets H and 

K of X , there exists I-open subsets U and V  such that H  U, K  V,   

U  V =   . Now H  U, H  Y  so H  U  Y, K  V, K  Y, Hence      

K  V  Y. Also U  V =  . Therefore (Y U )   (Y V) =   .   Since  U  

and  V  are I-open sets in X , and hence  Y U and Y V are I-open sets    
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in Y . Now corresponds to the two I-closed sets H and K  of Y , there 

exists I-open set Y U and Y V in Y  such that H Y U,  K Y V, and 

(Y U)   (Y V) =  . Hence (Y, 𝜏 
 
(IY)) is  fibrewise normal space    

over B .∎ 

Theorem :4-8-6 

     Fibrewise normality  invariant under continuous I-closed surjective  

map.  

Proof: 

        Let (X,  *
(I))  be  an  ideal  fibrewise  normal space over B ,         

and Y is a fibrewise ideal topological space over B ,and let                                

f :(X, *
(I))(Y,𝜏*

(J)) be a fibrewise continuous , I-closed and surjective.  

To prove (Y,  *
(J)) is fibrewise normal space over B. Let F1, and F2 be 

disjoint closed sets in Y. Since f is continuous, f
 -1

(F1) and f
 -1

(F2) are       

I-closed in X. Since F1 F2 =  .This implies that f
 -1

(F1)   f
 -1

(F2) =. Now 

X is fibrewise ideal normal space and f
  -1

(F1) , f
  -1

(F2) are disjoint I-closed 

subsets in X.Hence there exists I-open sets U and V such that f
 -1

(F1)   U,  

f
 -1

(F2)   V and  U V =   . put W1=Y \ f (X\U). Since f is  I-closed map 

and X\U is I-closed  f (X\U) is I-closed set in Y. Hence W1 is I-open in Y. 

Also f
 -1

(F1)   U, X\U    X\ f
 -1

(F1) , so X\U   f
 -1

(Y\F1). So  f
  -1

(W1) =    

f
  -1

(Y\ f
 
(X\U) = X\ f

  -1
(f (X\U)  X\(X\U) = U . 
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Hence f
 -1

(W)   U. Thus there exists I-open set W1 containing F1, such 

that f
 -1

(W1)   U. Similarly there exists W2 such that f
 -1

(W2)   V.                   

  f
 -1

(W1)   f
 -1

(W2)   U  V=  .Thus f
 -1

(W1  W2) =   and so W1 W2= 

 . Thus there exists I-open sets W1 containing F1 and W2 containing F2 

such that W1 W2= . Hence (Y  *
(J)) is fibrewise ideal normal space 

over B.∎ 

Definition:  4-9-1 

     A fibrewise ideal topological space (X ,  *
(I))  over B is said to be 

fibrewise completely normal iff every non-trivial fibre subspace is 

completely normal , that is for any two separated sets A and C of Xb ,  

where b     B ,  there  exists  disjoint  I-open  sets  G  and  H   in  Xb  such  

that   A   G, C  H. 

Definition: 4-9-2 

      A fibrewise ideal topological space (X, *
(I)) over B is said to be 

fibrewise ideal T5-space over B if it is a fibrewise ideal completely 

normal as well as fibrewise  ideal T1-space over B. 

Example: 4-9-3 

     Let X =   ,  1 is the discrete  topology on   , and B =   ,  2 the 

trivial topology on   and I = {A: A is finite subset of [0,1] } is an ideal 

on X . 
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A
*
(I,  )= {

 ̅                                      [   ]

                                 [   ]         
 

 cl
*
(A) = A  A

*
 =    then  *

 =  1 

If   P : (X ,  1)   (B ,  2 )  defined by  p(x) = x  then P  is continuous 

and Xb = p
-1

(b) = {b} is a trivial fibrewise  topological space  over B. 

So (  ,  *
(I)) is a fibrewise ideal T5- space over B. 

 Theorem: 4-9-4 

i) Every fibrewise ideal completely normal topological space over 

B is fibrewise ideal normal topological space over B. 

ii) Every fibrewise ideal T5- topological space over B is fibrewise 

ideal T4- topological space over B. 

Proof: 

i) Let A and C be two disjoint I-closed subsets of Xb, where b B. 

Therefore A = cl (A) and C = cl (C) and A  C =  . Which 

implies  cl(A)   C = A  C =  , and A  cl(C) = A  C =   , 

therefore A and C are separated sets .Since (X,𝜏*
(I)) is               

a fibrewise ideal completely normal space  over B, there exists 

I-open sets G and H such that  A  G and C H, and G  H =  , 

Hence  (X ,  *
(I)) is fibrewise ideal normal space  over B. 
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ii) Let (X,  *
(I)) be fibrewise ideal T5- space over B, then 

(X,  *
(I)) is fibrewise completely normal as well as fibrewise 

T1- space over B. By (i), hence (X,  *
(I)) is fibrewise normal as 

well as fibrewise T1- space over B. Therefore (X, *
(I)) is 

fibrewise ideal T4- space over B.∎  

 Theorem: 4-9-5 

     Every subspace of fibrewise ideal completely normal topological 

space over B is fibrewise ideal completely normal topological space 

over B. 

Proof: 

     Let (X,  *
(I)) be a fibrewise ideal completely normal space over B and 

Y be a subspace of X. To prove (Y,  *
(I)) is fibrewise ideal completely 

normal with the relative topology. Let A and C be separated sets in Y. 

Then we have clY(A)  C =   , A clY(C) =  . Now clY(A) =   cl (A) Y, 

clY(C)  = cl (C)   Y. 

Then  = A  clY(C) = A ( cl (C)   Y) = ( A  cl (C) )   Y= A  cl (C) 

Since A  clY(C)   A  Y . Similarly,   = clY(A)   C. Which implies that 

A and C are separated sets in X, and since X is fibrewise ideal completely 

normal topological space over B, there exists I-open sets G and H in X 

such that A  G, C  H , and  G  H =   . 
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     Now A  G and A  Y, so A  G  Y, let G  Y = U , then A  U , and         

C   Y, so C   H   Y, let H Y = V , then C   V , where U,V I-open        

sets in Y, U V = (G  Y)  ( H  Y) = (G  H)   Y=  .  

Hence (Y,   
 
(I)) is fibrewise ideal completely normal space over B.∎   
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 Conclusion 

Given a topological spaces  (X ,  ),  let (X ,   (I))   be a fibrewise ideal 

topological space over B with a projection P: X   B and fiber subspaces 

{ Xb : b  B } . We called a fiber subspace Xb is trivial  if  Xb =    or       

Xb = X and  we defined a fibrewise ideal topological space to be            

Ti-space if every non-trivial fibre subspace is Ti -space  for i=0,1,2,3,4,5  ; 

where Ti is the separation axiom for  all i . During our study we found 

that :  

1/ If (X ,  ) is a Ti-space, then (X,  *
(I)) is a fibrewise ideal               

Ti topological space  over B  for  i = 0,1,2.   

2/ If (X ,  *
(I)) is a Ti-space, then (X ,  *

(I)) is a fibrewise ideal        

Ti topological space over B for i = 0,1,2,3,4,5 . 

3/ (X ,  *
(I)) is a fibrewise ideal Ti topological space over B  without 

being(X ,  *
(I))  is a Ti-space  for i = 0,1,2,3,4,5.    
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 ملخص

      

التبولوجٌا  (I)* و X مثالً على  I ,فضاء تبولوجً   (  , X )إذا كان        

 B, فإن لأي فضاء تبولوجً  I المولدة بواسطة المثالً  الأقوى من التبولوجٌا 

فضاء مثالً  X,  *(I) ))دالة مستمرة ٌسمى الفضاء    P : X  Bبحٌث تكون  

 وله فضاءات جزئٌة لٌفٌة   B لٌفً على

  . B     b        لكل Xb=P
-1

(b)      حيث  { Xb : b    B}  

 ات المثالية الليفية فضاءال في  الهذف من الشسالة هى تعشيف مسلمات الفصل

الأساسية والنتائج  المفاهيم. أيضاً سىف نناقش ودساسة بعض الخىاص الأساسية 

مسلمات ب وعلاقتهاهزه المسلمات بين علاقة بما في رلك ال المهمة في هزا المىضىع

 .الفصل المعشوفة

       


